TAWC: Text Augmentation with Word Contributions for Imbalance Aspect-Based Sentiment Classification
Abstract
:1. Introduction
- We introduce an effective method to determine individual word contributions in a sentence. Word contributions represent the relationship between words and sentiment polarity considering both analytical and semantic perspectives, which guarantee the recognition accuracy of the word contributions.
- We propose a selective augmentation method based on word contributions that uses synonyms by measuring the similarity between word embeddings. The proposed method generates a relatively clean sample and is simple to implement.
- We conduct extensive comparative experiments to verify the effectiveness of the proposed augmentation approaches.
- We present a lightweight word extraction strategy that can motivate research in other disciplines such as information retrieval and document representation.
2. Related Work
2.1. Supervised Methods
2.2. Unsupervised Methods
3. Word Selection for Augmentation
3.1. Data Preprocessing
3.2. Word Contributions Extraction
- Analytical Correlation. This metric assesses how frequently word co-occurs with class but not other words in the training dataset;
- Semantic Similarity. This measures a word’s semantic similarity with class .
- Meaningful words: Words in this group are useful class-indicating words with high correlation and high semantic similarity with the corresponding label.
- Necessity words. Words usually co-occur frequently with classes but have low semantic similarity. These words can provide extra information about the class. However, their low semantic similarity may cause noise.
- Reward words: These words have low correlation but high semantic similarity, which is useful for model generalization.
- Irrelevant words: Words with less contribution to sentiment classification because they have low correlation and low semantic similarity.
Algorithm 1 Word Contributions Extraction |
Require: sentences, labels, and word embeddings Ensure: set of word contributions
|
3.3. Selective Augmentation Operations
- Selective Replacement (SR): Select n words, except Meaningful words from the given sentence and replace them with synonyms. The only thing to keep in mind is that the replacement should not fall within the aspect term. This is ensured by replacing the aspect term with a fixed expression ($t$) before the replacement.
- Selective Insertion (SI): Select n words, except Necessity, and Irrelevant words from the sentence and then insert their synonyms. We must ensure that the aspect words remain unchanged. Replacing the aspect with a single expression ($t$) resolves this problem.
- Selective Deletion (SD): Choose n words, except aspect term and Meaningful words from the sentences, and then delete them. We must apply a procedure similar to that described above and replace the aspect word with a fixed expression ($t$) to ensure that this expression cannot be selected for deletion.
Algorithm 2 Selective replacement |
Require: training dataset , aspect term, , fixed expression $t$, Necessity words ; reward words ; irrelevant words ; and Word2Vec Ensure: augmented dataset
|
4. Experiments
4.1. Datasets
4.2. Baselines
- No-DA trains the three classifiers without data augmentation operations.
- EDA [8] is a random word replacement method based on WordNet.
- IG [12] selects the word in the text to be replaced based on the integrated gradient attribute score and uses WordNet to identify synonyms.
- IG-w2v is the extended version of the original IG. We applied the word2vec model to obtain similar words.
4.3. Parameter Settings
5. Results and Discussion
5.1. Comparison of Performances with Baselines
5.2. Evaluation of Data Augmentation Methods for Low-Resource Scenarios
5.3. Effectiveness of Each Augmentation Operation
5.4. Ablation Study
- TAWC-C: We only applied correlation to extract words in the sentence into two groups: high and low correlation.
- TAWC-S: We only used semantic similarity to separate words in the text into two types: high and low similarity.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Rao, Y.; Xie, H.; Wang, F.L.; Zhao, Y.; Yin, J. Sentiment Classification Using Negative and Intensive Sentiment Supplement Information. Data Sci. Eng. 2019, 4, 109–118. [Google Scholar] [CrossRef]
- Xu, L.; Wang, W. Improving aspect-based sentiment analysis with contrastive learning. Nat. Lang. Process. J. 2023, 3, 100009. [Google Scholar] [CrossRef]
- Wang, W.; Gan, Z.; Wang, W.; Shen, D.; Huang, J.; Ping, W.; Satheesh, S.; Carin, L. Topic Compositional Neural Language Model. arXiv 2017. [Google Scholar] [CrossRef]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Xu, P.; Ji, X.; Li, M.; Lu, W. Small data machine learning in materials science. NPJ Comput. Mater. 2023, 9, 42. [Google Scholar] [CrossRef]
- Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data imbalance in classification: Experimental evaluation. Inf. Sci. 2020, 513, 429–441. [Google Scholar] [CrossRef]
- Wei, J.; Zou, K. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 6382–6388. [Google Scholar] [CrossRef]
- Sugiyama, A.; Yoshinaga, N. Data augmentation using back-translation for context-aware neural machine translation. In Proceedings of the Fourth Workshop on Discourse in Machine Translation (DiscoMT 2019), Stroudsburg, PA, USA, 3 November 2019; pp. 35–44. [Google Scholar] [CrossRef]
- Kobayashi, S. Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 452–457. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Ding, Y.; Zhou, K.; Yan, X. Data augmentation for aspect-based sentiment analysis. Int. J. Mach. Learn. Cyber. 2023, 14, 125–133. [Google Scholar] [CrossRef]
- Santoso, N.; Mendonça, I.; Aritsugi, M. Text Augmentation Based on Integrated Gradients Attribute Score for Aspect-based Sentiment Analysis. In Proceedings of the 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), Kota Kinabalu, Malaysia, 13–16 February 2023; pp. 227–234. [Google Scholar] [CrossRef]
- Şenel, L.K.; Utlu, İ.; Yücesoy, V.; Koç, A.; Çukur, T. Semantic Structure and Interpretability of Word Embeddings. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1769–1779. [Google Scholar] [CrossRef]
- Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019. [Google Scholar] [CrossRef]
- Wu, X.; Lv, S.; Zang, L.; Han, J.; Hu, S. Conditional BERT Contextual Augmentation. In Proceedings of the Computational Science—ICCS 2019, Faro, Portugal, 12–14 June 2019; Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M., Eds.; Springer: Cham, Switezerland; pp. 84–95. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, Y.; Wang, J.; Li, P. Data augmentation using Heuristic Masked Language Modeling. Int. J. Mach. Learn. Cybern. 2023, 14, 2591–2605. [Google Scholar] [CrossRef]
- Moreno-Barea, F.J.; Jerez, J.M.; Franco, L. Improving classification accuracy using data augmentation on small data sets. Expert Syst. Appl. 2020, 161, 113696. [Google Scholar] [CrossRef]
- Anaby-Tavor, A.; Carmeli, B.; Goldbraich, E.; Kantor, A.; Kour, G.; Shlomov, S.; Tepper, N.; Zwerdling, N. Not Enough Data? Deep Learning to the Rescue! arXiv 2019. [Google Scholar] [CrossRef]
- Kumar, V.; Choudhary, A.; Cho, E. Data Augmentation using Pre-trained Transformer Models. arXiv 2020. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yang, D. That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using petpeeve Tweets. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA, 17–21 September 2015; pp. 2557–2563. [Google Scholar] [CrossRef]
- Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.T.; Le, Q.V. Unsupervised Data Augmentation for Consistency Training. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 6256–6268. [Google Scholar]
- Ahmed, H.; Traore, I.; Mamun, M.; Saad, S. Text augmentation using a graph-based approach and clonal selection algorithm. Mach. Learn. Appl. 2023, 11, 100452. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, R.; Luo, Z.; Hu, C.; Mao, Y. Adversarial word dilution as text data augmentation in low-resource regime. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; AAAI Press: Washington, DC, USA, 2023. AAAI’23/IAAI’23/EAAI’23. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, H.; Zhu, Z.; Mao, K. Tailored text augmentation for sentiment analysis. Expert Syst. Appl. 2022, 205, 117605. [Google Scholar] [CrossRef]
- Liesting, T.; Frasincar, F.; Truşcă, M.M. Data Augmentation in a Hybrid Approach for Aspect-Based Sentiment Analysis. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 22–26 March 2021; SAC ’21. pp. 828–835. [Google Scholar] [CrossRef]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Duong, H.T.; Nguyen-Thi, T.A. A review: Preprocessing techniques and data augmentation for sentiment analysis. Comput. Soc. Netw. 2021, 8, 1. [Google Scholar] [CrossRef]
- Fredriksen, V.; Jahren, B.; Gambäck, B. Utilizing Large Twitter Corpora to Create Sentiment Lexica. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018; Calzolari, N., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Hasida, K., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., et al., Eds.; European Language Resources Association (ELRA): Miyazaki, Japan, 2018. [Google Scholar]
- Padmakumar, V.; He, H. Unsupervised Extractive Summarization using Pointwise Mutual Information. arXiv 2021. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013. [Google Scholar] [CrossRef]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3982–3992. [Google Scholar] [CrossRef]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Manandhar, S.; Androutsopoulos, I. SemEval-2015 Task 12: Aspect Based Sentiment Analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, Colorado, 4–5 June 2015; pp. 486–495. [Google Scholar] [CrossRef]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; AL-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; et al. SemEval-2016 Task 5: Aspect Based Sentiment Analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), San Diego, CA, USA, 16–17 June 2016; pp. 19–30. [Google Scholar] [CrossRef]
- Guo, B.; Han, S.; Huang, H. Selective Text Augmentation with Word Roles for Low-Resource Text Classification. arXiv 2022. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. arXiv 2017. [Google Scholar] [CrossRef]
- Ganguly, D. Learning variable-length representation of words. Pattern Recognit. 2020, 103, 107306. [Google Scholar] [CrossRef]
- Tang, C.; Ma, K.; Cui, B.; Ji, K.; Abraham, A. Long text feature extraction network with data augmentation. Appl. Intell. 2022, 52, 17652–17667. [Google Scholar] [CrossRef]
Categories | Rules |
---|---|
Meaningful | |
Necessity | |
Reward | |
Irrelevant |
Label | Negative | Neutral |
---|---|---|
Meaningful | [’bad’, ’disappointing’, ’unhelpful’, ’unfriendly’, ’minus’, ’worst’, ’lousy’,’horrid’] | [’mediorce’, ’beat’, ’simple’, ’green’, ’settled’, ’varies’, ’normal’, ’suppose’, ’casual’, ’ok’] |
Necessity | [’stuffed’, ’appetizer’, ’least’, ’boyfriend’, ’prepared’, ’friend’, ’flirting’, ’walked’] | [’adventure’, ’trophy’, ’couple’, ’doors’, ’blueberry’, ’wives’, ’arrive’, ’delivers’,’refill’] |
Reward | [’distraction’, ’kanish’, ’overall’, ’generally’, ’paying’, ’fair’, ’typical’,’noisy’, ’big’] | [’nice’, ’however’, ’back’, ’simply’, ’attentive’, ’warm’, ’would’, ’high’] |
Irrelevant | [’city’, ’world’, ’wooden’, ’fix’,
’sashimi’, ’village’, ’potato’, ’ny’, ’italian’] | [’menu’, ’dinner’, ’restaurant’, ’took’, ’restaurants’, ’wine’, ’money’, ’worth’] |
SemEval 2015 | SemEval 2016 | |||
---|---|---|---|---|
Training | Testing | Training | Testing | |
Positive | 963 | 353 | 1319 | 483 |
Neutral | 36 | 37 | 72 | 32 |
Negative | 280 | 207 | 488 | 135 |
Imbalance ratio | 26.5:1:7.7 | 9.2:1:5.6 | 18.3:1:6.7 | 15.1:1:4.2 |
SemEval 2015 | SemEval 2016 | |||||
---|---|---|---|---|---|---|
Methods | BERT | DistilBERT | RoBERTa | BERT | DistilBERT | RoBERTa |
Avg ± Std (Best) | Avg ± Std (Best) | Avg ± Std (Best) | Avg ± Std (Best) | Avg ± Std (Best) | Avg ± Std (Best) | |
No-DA | 80.29 ± 0.41 | 78.22 ± 0.12 | 81.48 ± 0.44 | 83.91 ± 0.57 | 85.58 ± 0.12 | 85.60 ± 0.33 |
(80.72) | (78.39) | (81.94) | (84.49) | (85.76) | (85.95) | |
EDA | 80.22 ± 0.85 | 78.28 ± 0.42 | 81.71 ± 0.47 | 84.51 ± 0.35 | 83.14 ± 0.16 | 85.29 ± 0.46 |
(81.08) | (78.72) | (82.19) | (84.88) | (83.30) | (85.77) | |
EDA-w2v | 80.45 ± 0.74 | 79.67 ± 0.55 | 82.16 ± 0.12 | 85.53 ± 0.88 | 83.12 ± 0.67 | 88.3 ± 0.59 |
(81.19) | (80.24) | (82.28) | (86.49) | (83.82) | (88.97) | |
IG | 80.34 ± 0.98 | 79.81 ± 0.14 | 81.64 ± 0.64 | 85.89 ± 0.84 | 83.08 ± 0.21 | 86.87 ± 0.97 |
(81.35) | (79.97) | (82.29) | (86.78) | (83.30) | (87.79) | |
IG-w2v | 80.68 ± 0.81 | 81.40 ± 0.46 | 81.59 ± 0.74 | 86.92 ± 1.32 | 83.16 ± 0.42 | 88.87 ± 0.79 |
(81.40) | (81.88) | (82.36) | (88.21) | (83.61) | (89.69) | |
TAWC | 81.96 ± 0.48 | 81.13 ± 0.77 | 83.58 ± 0.48 | 88.97 ± 0.85 | 86.14 ± 0.32 | 89.67 ± 0.61 |
(82.58) | (81.90) | (83.92) | (90.15) | (86.46) | (90.37) |
SemEval 2015 | SemEval 2016 | |||||
---|---|---|---|---|---|---|
Models | BERT | DistilBERT | RoBERTa | BERT | DistilBERT | RoBERTa |
Methods | Avg ± Std | Avg ± Std | Avg ± Std | Avg ± Std | Avg ± Std | Avg ± Std |
(Best) | (Best) | (Best) | (Best) | (Best) | (Best) | |
No-DA | 80.29 ± 0.41 | 78.22 ± 0.12 | 81.48 ± 0.44 | 83.91 ± 0.57 | 85.58 ± 0.12 | 85.60 ± 0.33 |
(80.72) | (78.39) | (81.94) | (84.49) | (85.76) | (85.95) | |
SR | 81.26 ± 0.48 | 81.13 ± 0.77 | 83.58 ± 0.48 | 88.97 ± 0.85 | 87.10 ± 0.13 | 89.67 ± 0.61 |
(81.78) | (81.90) | (83.92) | (90.15) | (87.23) | (90.37) | |
SI | 80.11 ± 0.10 | 81.14 ± 0.35 | 83.76 ± 0.17 | 89.87 ± 0.45 | 87.12 ± 0.53 | 90.03 ± 0.47 |
(80.23) | (81.50) | (83.84) | (90.32) | (87.69) | (90.58) | |
SD | 80.25 ± 0.96 | 80.03 ± 0.65 | 83.58 ± 0.48 | 90.12 ± 0.39 | 86.03 ± 0.12 | 89.08 ± 0.70 |
(81.28) | (80.69) | (83.92) | (90.15) | (86.15) | (89.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoso, N.; Mendonça, I.; Aritsugi, M. TAWC: Text Augmentation with Word Contributions for Imbalance Aspect-Based Sentiment Classification. Appl. Sci. 2024, 14, 8738. https://doi.org/10.3390/app14198738
Santoso N, Mendonça I, Aritsugi M. TAWC: Text Augmentation with Word Contributions for Imbalance Aspect-Based Sentiment Classification. Applied Sciences. 2024; 14(19):8738. https://doi.org/10.3390/app14198738
Chicago/Turabian StyleSantoso, Noviyanti, Israel Mendonça, and Masayoshi Aritsugi. 2024. "TAWC: Text Augmentation with Word Contributions for Imbalance Aspect-Based Sentiment Classification" Applied Sciences 14, no. 19: 8738. https://doi.org/10.3390/app14198738
APA StyleSantoso, N., Mendonça, I., & Aritsugi, M. (2024). TAWC: Text Augmentation with Word Contributions for Imbalance Aspect-Based Sentiment Classification. Applied Sciences, 14(19), 8738. https://doi.org/10.3390/app14198738