Impact of Four Different Chlorella vulgaris Strains on the Properties of Durum Wheat Semolina Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Pasta Production
2.2.1. Production
2.2.2. Drying
2.3. Physical Analyses
2.3.1. Residual Moisture Content after Drying
2.3.2. Optimal Cooking Time
2.3.3. Water Absorption
2.3.4. Cooking Losses
2.3.5. Color Analysis
2.3.6. Bite Resistance/Firmness
2.3.7. Scanning Electron Microscopy
2.4. Sensory Evaluation
2.5. Data Analyses
3. Results
3.1. Changes in Processing Behavior and Composition
3.2. Changes in Physical Pasta Properties
3.3. Changes in Sensorial Pasta Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Costa Azevedo, I.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Baune, M.-C.; Jeske, A.-L.; Profeta, A.; Smetana, S.; Broucke, K.; Van Royen, G.; Gibis, M.; Weiss, J.; Terjung, N. Effect of plant protein extrudates on hybrid meatballs—Changes in nutritional composition and sustainability. Future Foods 2021, 4, 100081. [Google Scholar] [CrossRef]
- Ebert, S.; Michel, W.; Nedele, A.-K.; Baune, M.-C.; Terjung, N.; Zhang, Y.; Gibis, M.; Weiss, J. Influence of protein extraction and texturization on odor-active compounds of pea proteins. J. Sci. Food Agric. 2022, 102, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Pasqualone, A. Lupine (Lupinus spp.) proteins: Characteristics, safety and food applications. Eur. Food Res. Technol. 2022, 248, 345–356. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Chacón-Lee, T.L.; González-Mariño, G.E. Microalgae for “Healthy” Foods—Possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef]
- Nova, P.; Martins, A.P.; Teixeira, C.; Abreu, H.; Silva, J.G.; Silva, A.M.; Freitas, A.C.; Gomes, A.M. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J. Appl. Phycol. 2020, 32, 1789–1802. [Google Scholar] [CrossRef]
- Fanari, F.; Comaposada, J.; Boukid, F.; Climent, E.; Claret Coma, A.; Guerrero, L.; Castellari, M. Enhancing energy bars with microalgae: A study on nutritional, physicochemical and sensory properties. J. Funct. Foods 2023, 109, 105768. [Google Scholar] [CrossRef]
- Elkot, W.F.; Elmahdy, A.; El-Sawah, T.H.; Alghamdia, O.A.; Alhag, S.K.; Al-Shahari, E.A.; Al-Farga, A.; Ismail, H.A. Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. Int. J. Biol. Macromol. 2024, 258, 128999. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT—Food Sci. Technol. 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Graça, C.; Fradinho, P.; Sousa, I.; Raymundo, A. Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT—Food Sci. Technol. 2018, 89, 466–474. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. LWT—Food Sci. Technol. 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Hernández-López, I.; Benavente Valdés, J.R.; Castellari, M.; Aguiló-Aguayo, I.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Lafarga, T. Utilisation of the marine microalgae Nannochloropsis sp. and Tetraselmis sp. as innovative ingredients in the formulation of wheat tortillas. Algal Res. 2021, 58, 102361. [Google Scholar] [CrossRef]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT—Food Sci. Technol. 2019, 115, 108439. [Google Scholar] [CrossRef]
- Fantechi, T.; Contini, C.; Casini, L. Pasta goes green: Consumer preferences for spirulina-enriched pasta in Italy. Algal Res. 2023, 75, 103275. [Google Scholar] [CrossRef]
- Van der Stricht, H.; Profeta, A.; Hung, Y.; Verbeke, W. Consumers’ willingness-to-buy pasta with microalgae proteins—Which label can promote sales? Food Qual. Prefer. 2023, 110, 104948. [Google Scholar] [CrossRef]
- Zen, C.K.; Tiepo, C.B.V.; da Silva, R.V.; Reinehr, C.O.; Gutkoski, L.C.; Oro, T.; Colla, L.M. Development of functional pasta with microencapsulated Spirulina: Technological and sensorial effects. J. Sci. Food Agric. 2020, 100, 2018–2026. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT—Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Oliveira, B.C.C.; Machado, M.; Machado, S.; Costa, A.S.G.; Bessada, S.; Alves, R.C.; Oliveira, M.B.P.P. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023, 12, 3039. [Google Scholar] [CrossRef] [PubMed]
- García-Moncayo, A.; Rodríguez-Martínez, E.; Ochoa Reyes, E.; Sáenz-Hidalgo, H.; Sepúlveda, D.; Buenrostro-Figueroa, J.; Alvarado-González, M. Nutritionally improved pasta with Arthrospira platensis: Effect of cooking on antioxidant capacity and pigments content. Emir. J. Food Agric. 2023, 35, 782–790. [Google Scholar] [CrossRef]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT—Food Sci. Technol. 2013, 50, 312–319. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, M.; León, A.E. The use of Nannochloropsis sp. as a source of omega-3 fatty acids in dry pasta: Chemical, technological and sensory evaluation. Int. J. Food Sci. Technol. 2018, 53, 499–507. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Abdo, S.M.; Hussein, A.M. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. Int. J. Pharm. Sci. Rev. Res. 2017, 46, 45–51. [Google Scholar]
- Schüler, L.M.; Greque de Morais, E.; Trovão, M.; Machado, A.; Carvalho, B.; Carneiro, M.; Maia, I.; Soares, M.; Duarte, P.; Barros, A.; et al. Isolation and Characterization of Novel Chlorella vulgaris Mutants with Low Chlorophyll and Improved Protein Contents for Food Applications. Front. Bioeng. Biotechnol. 2020, 8, 469. [Google Scholar] [CrossRef]
- BMEL. Leitsätze des Deutschen Lebensmittelbuchs für Teigwaren. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/Lebensmittel-Kennzeichnung/LeitsaetzeTeigwaren.pdf?__blob=publicationFile&v=5 (accessed on 8 June 2024).
- AACC International. Method 66-50.01, Pasta and Noodle Cooking Quality—Firmness. Approved Methods of Analysis, 11th ed. Available online: https://www.cerealsgrains.org/resources/Methods/Pages/66Semolina_Pasta_NoodleQuality.aspx (accessed on 6 January 2021).
- Van De Walle, S.; Gifuni, I.; Coleman, B.; Baune, M.-C.; Rodrigues, A.; Cardoso, H.; Fanari, F.; Muylaert, K.; Van Royen, G. Innovative vs classical methods for drying heterotrophic Chlorella vulgaris: Impact on protein quality and sensory properties. Food Res. Int. 2024, 182, 114142. [Google Scholar] [CrossRef]
- Witte, F.; Sawas, E.; Berger, L.M.; Gibis, M.; Weiss, J.; Röser, A.; Upmann, M.; Joeres, E.; Juadjur, A.; Bindrich, U.; et al. Influence of Finely Chopped Meat Addition on Quality Parameters of Minced Meat. Appl. Sci. 2022, 12, 10590. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- Sissons, M. Role of durum wheat composition on the quality of pasta and bread. Food 2008, 2, 75–90. [Google Scholar]
- Sicignano, A.; Di Monaco, R.; Masi, P.; Cavella, S. From raw material to dish: Pasta quality step by step. J. Sci. Food Agric. 2015, 95, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valle, D.E.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Effects of mixing, sheeting, and cooking on the starch, protein, and water structures of durum wheat semolina and chickpea flour pasta. Food Chem. 2021, 360, 129993. [Google Scholar] [CrossRef] [PubMed]
Parameter (g/100 g) | SCV | HCV | WCV | NHCV | DWS |
---|---|---|---|---|---|
Protein | 26.3 | 30.5 | 36.1 | 33.5 | ~11.0 |
Fat | 7.0 | 11.5 | 7.6 | 10.5 | ~1.4 |
Carbohydrates incl. DF | 58.1 | 53.7 | 48.8 | 51.3 | ~72.1 |
thereof DF | – | 12.9 | – | 13.1 | ~3.1 |
Ash | 4.0 | 2.0 | 4.6 | 2.1 | – |
Moisture | 4.9 | 2.4 | 2.9 | 2.6 | 11.9 1 |
Energy (kcal/100 g) | 367.0 | 414.5 | 356.0 | 408.0 | ~339.0 |
Ingredient | Control | 3% SCV | 5% SCV | 3% HCV | 5% HCV | 3% WCV | 5% WCV | 3% NHCV | 5% NHCV |
---|---|---|---|---|---|---|---|---|---|
DWS | 75.00 | 72.49 | 70.88 | 72.39 | 70.90 | 72.39 | 70.90 | 72.48 | 70.81 |
Microalgae | – | 2.24 | 3.73 | 2.24 | 3.73 | 2.24 | 3.73 | 2.24 | 3.73 |
Tap water | 25.00 | 25.27 | 25.39 | 25.37 | 25.37 | 25.37 | 25.37 | 25.28 | 25.46 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Final dough moisture | 34.02 | 34.03 | 34.04 | 34.01 | 33.99 | 34.01 | 33.99 | 33.96 | 33.98 |
Sample | Net Power Consumption (W) | Moisture Content (%) |
---|---|---|
Control | 190.17 ± 42.84 a | 10.24 ± 0.60 a |
3% SCV | 187.59 ± 42.29 abc | 10.80 ± 0.74 ab |
5% SCV | 176.01 ± 41.64 ac | 10.79 ± 0.60 ab |
3% HCV | 202.85 ± 56.38 abd | 9.84 ± 0.60 abc |
5% HCV | 204.42 ± 56.91 abd | 9.81 ± 0.98 abc |
3% WCV | 204.42 ± 51.83 abd | 9.61 ± 1.13 ac |
5% WCV | 198.37 ± 51.96 abd | 10.53 ± 0.94 abc |
3% NHCV | 206.12 ± 50.04 ad | 9.86 ± 0.79 abc |
5% NHCV | 215.02 ± 56.04 d | 9.45 ± 0.90 ac |
Sample | Cooking Time (s) | Water Absorption (%) | Cooking Losses (%) | Bite Resistance/Firmness (kPa) |
---|---|---|---|---|
Control | 190.0 ± 15.0 a | 105.0 ± 6.5 a | 0.3 ± 0.1 a | 333.2 ± 58.5 a |
3% SCV | 180.0 ± 00.0 ab | 96.9 ± 1.6 ab | 0.4 ± 0.1 a | 297.1 ± 45.6 a |
5% SCV | 183.3 ± 05.0 a | 97.0 ± 4.2 ab | 0.4 ± 0.1 a | 386.3 ± 103.3 ab |
3% HCV | 180.0 ± 00.0 ab | 100.7 ± 3.1 a | 0.4 ± 0.0 a | 407.0 ± 32.3 bc |
5% HCV | 181.1 ± 03.3 ab | 95.9 ± 3.6 ab | 0.4 ± 0.0 a | 351.4 ± 33.9 abd |
3% WCV | 180.0 ± 00.0 ab | 97.1 ± 2.9 ab | 0.3 ± 0.0 a | 437.6 ± 41.7 bc |
5% WCV | 180.0 ± 00.0 ab | 98.0 ± 0.9 a | 0.4 ± 0.1 a | 296.7 ± 11.9 ad |
3% NHCV | 160.0 ± 15.0 b | 88.2 ± 4.4 b | 0.4 ± 0.0 a | 456.1 ± 121.9 bc |
5% NHCV | 170.0 ± 15.0 ab | 89.1 ± 3.2 b | 0.4 ± 0.0 a | 419.8 ± 31.1 bc |
Attribute | Scale (0–10) | Control | 3% SCV | 5% SCV | 3% HCV | 5% HCV | 3% WCV | 5% WCV | 3% NHCV | 5% NHCV |
---|---|---|---|---|---|---|---|---|---|---|
Typical odor | low–intense | 6.75 ± 0.49 a | 2.41 ± 1.36 b | 2.03 ± 0.86 b | 4.45 ± 1.19 cd | 3.19 ± 1.16 bc | 4.42 ± 0.87 cd | 3.17 ± 1.33 bc | 5.77 ± 0.60 ad | 5.21 ± 0.79 d |
Fishy/off-odor | low–intense | 0.63 ± 0.67 a | 5.10 ± 1.51 b | 5.20 ± 1.95 b | 3.41 ± 1.77 bc | 3.80 ± 1.60 bc | 3.32 ± 2.03 bc | 3.32 ± 1.59 bc | 1.86 ± 1.23 ac | 1.83 ± 1.19 ac |
After/off-taste | absent–very different | 0.96 ± 0.97 a | 5.21 ± 1.54 b | 5.29 ± 1.35 b | 4.03 ± 1.77 bc | 3.77 ± 1.57 bc | 2.75 ± 1.11 abd | 2.95 ± 1.93 abd | 1.23 ± 0.75 ad | 1.79 ± 0.71 acd |
Saltiness | low–intense | 0.82 ± 1.08 a | 3.05 ± 2.12 a | 2.47 ± 1.85 a | 2.65 ± 1.75 a | 2.57 ± 1.92 a | 1.65 ± 1.53 a | 1.97 ± 1.58 a | 1.88 ± 1.21 a | 1.57 ± 1.42 a |
Bite resistance | soft–firm | 2.27 ± 1.21 a | 4.21 ± 1.04 b | 4.12 ± 1.72 ab | 4.39 ± 1.08 b | 4.11 ± 1.25 ab | 3.64 ± 1.50 ab | 2.95 ± 1.46 ab | 3.55 ± 1.19 ab | 3.88 ± 1.93 ab |
Stickiness | low–intense | 4.12 ± 3.14 a | 4.39 ± 1.55 a | 4.14 ± 1.92 a | 3.62 ± 1.39 a | 3.71 ± 2.08 a | 4.34 ± 2.41 a | 4.86 ± 1.85 a | 3.55 ± 2.15 a | 3.66 ± 2.01 a |
Color | light–dark | 1.27 ± 0.47 a | 12.32 ± 0.72 1,bc | 13.00 ± 0.00 1,c | 4.55 ± 0.52 bd | 5.36 ± 1.03 bce | 2.41 ± 0.49 ad | 3.23 ± 0.61 ade | 3.91 ± 0.54 ade | 4.91 ± 0.54 bce |
(given scale) | (yellow) | (green) | (green) | (yellow) | (yellow) | (yellow) | (yellow) | (yellow) | (yellow) | |
Acceptance | 91% (10/11) | 27% (3/11) | 36% (4/11) | 55% (6/11) | 55% (6/11) | 64% (7/11) | 27% (3/11) | 72% (8/11) | 91% (10/11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baune, M.-C.; Lickert, T.; Schilling, F.; Bindrich, U.; Tomasevic, I.; Heinz, V.; Smetana, S.; Terjung, N. Impact of Four Different Chlorella vulgaris Strains on the Properties of Durum Wheat Semolina Pasta. Appl. Sci. 2024, 14, 8760. https://doi.org/10.3390/app14198760
Baune M-C, Lickert T, Schilling F, Bindrich U, Tomasevic I, Heinz V, Smetana S, Terjung N. Impact of Four Different Chlorella vulgaris Strains on the Properties of Durum Wheat Semolina Pasta. Applied Sciences. 2024; 14(19):8760. https://doi.org/10.3390/app14198760
Chicago/Turabian StyleBaune, Marie-Christin, Thomas Lickert, Frank Schilling, Ute Bindrich, Igor Tomasevic, Volker Heinz, Sergiy Smetana, and Nino Terjung. 2024. "Impact of Four Different Chlorella vulgaris Strains on the Properties of Durum Wheat Semolina Pasta" Applied Sciences 14, no. 19: 8760. https://doi.org/10.3390/app14198760
APA StyleBaune, M. -C., Lickert, T., Schilling, F., Bindrich, U., Tomasevic, I., Heinz, V., Smetana, S., & Terjung, N. (2024). Impact of Four Different Chlorella vulgaris Strains on the Properties of Durum Wheat Semolina Pasta. Applied Sciences, 14(19), 8760. https://doi.org/10.3390/app14198760