Hardware-Accelerated Infrared Small Target Recognition Based on Energy-Weighted Local Uncertainty Measure
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Motivation and Contribution
- This paper first analyzes the characteristic uncertainty of dim target detection and emphasizes its critical importance for enhancing the performance of infrared small target detection.
- This paper introduces a method that constructs a local consistency structure window to analyze the consistency of signal components within a small target’s detection space, which is particularly effective in complex backgrounds or under low signal-to-noise ratio conditions.
- This paper employs a variable entropy operator to measure uncertainty in the local region, which is essential for improving the robustness of small target detection. The algorithm further incorporates an energy-weighting function designed with a Gaussian matching filter.
- A classical adaptive threshold segmentation algorithm is used to extract the target, demonstrating its capability to process complex backgrounds using real data.
2. Background and Basic Principle
2.1. Analysis of Imaging Characteristics for Small Targets
2.2. Analysis of Background Characteristics in Complex Scenes
2.3. Analysis of Target-Complex Background Coupling
2.4. Detectability Assessment
3. Spatial Enhanced Detection Algorithm
3.1. Energy-Weighted Local Uncertainty Measure
3.2. Local Uncertainty Measurement
- When the window only covers the background signal, the local gray value is stable and the consistency is high;
- When the target signal is wrapped in the window, the local gray value is also relatively stable, but the energy in the window should be significantly higher than that in the background area;
- When the window-wrapping target is at the interface with the background, the local gray value has an obvious gradient and low consistency.
- If the location of the region center is in high consistency with its eight neighboring regions, then ;
- If the energy at the center of the region is low, then ;
- If the energy in the center of the region is higher, .
3.3. Energy-Weighting Coefficient
4. Hardware Accelerator Design
4.1. Overall Hardware Architecture
4.2. Submodule Design
4.2.1. Filter Module
4.2.2. Component Consistency Measurement Module
4.2.3. Confidence Assignment Function Module
4.2.4. Mutation Entropy Function Module
4.2.5. Remaining Operational Modules
5. Experimental Results and Comparison
5.1. Experimental Results
5.2. Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Notation |
ELUM | Energy-weighted Local Uncertainty Measure |
LUM | Local Uncertainty Measure |
EWF | Energy-weighting function |
PSF | Point Spread Function |
RDR | Rank-Deficiency Rate |
GLCM | Gray-Level Co-occurrence Matrix |
IDM | Inverse Difference Moment |
ASM | Angular Second Moment |
CON | Contrast |
COR | Correlation |
TSR | Target Significant Rate |
HPR | High Pixel Rate |
TSD | Target Saliency Degree |
TCD | Target Confusion Degree |
TD | Target Detectability |
BCD | Background Complexity Degree |
References
- Li, C.X.; Lin, S.J.; Chang, K.L. FPGA Implementation of Infrared Images Small Targets Track-Before-Detect System. In Proceedings of the 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), Kyoto, Japan, 12–15 October 2021; pp. 532–533. [Google Scholar]
- Wu, Y.; Yan, H.; Wang, M. Detection algorithm of infrared dim small target based on FPGA. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 7–8 November 2020; pp. 7650–7655. [Google Scholar]
- Chen, Y.; Yu, Y.X.; Zhao, T. The method of infrared point target detection and tracking based on DSP + FPGA. Appl. Mech. Mater. 2014, 457, 1272–1277. [Google Scholar] [CrossRef]
- Bo, M.; Hui, Z.; Zheng, M.; Ang, L.; Wenyang, J.; Weijun, M. FPGA implementation of local contrast method for infrared small target detection. In Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China, 16–18 July 2015; Volume 3, pp. 1293–1297. [Google Scholar]
- Zhang, Y.; Gao, J.; Yang, X.; Yang, C. Hardware acceleration of infrared small target detection based on FPGA. In Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 16–19 December 2022; pp. 342–347. [Google Scholar]
- Roy, P.; Das, D.; Dash, P.; Chauhan, M. Hardware Software Co-Design for Real Time Detection of Small Target in IR Video. In Proceedings of the 2019 International Conference on Range Technology (ICORT), Balasore, India, 15–17 February 2019; pp. 1–5. [Google Scholar]
- Hu, K.; Sun, W.; Nie, Z.; Cheng, R.; Chen, S.; Kang, Y. Real-time infrared small target detection network and accelerator design. Integration 2022, 87, 241–252. [Google Scholar] [CrossRef]
- Kou, R.; Wang, C.; Peng, Z.; Zhao, Z.; Chen, Y.; Han, J.; Huang, F.; Yu, Y.; Fu, Q. Infrared small target segmentation networks: A survey. Pattern Recognit. 2023, 143, 109788. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, C.; Gao, Z.; Xie, C. Anlpt: Self-adaptive and non-local patch-tensor model for infrared small target detection. Remote Sens. 2023, 15, 1021. [Google Scholar] [CrossRef]
- Liu, Y. Review of infrared image complexity evaluation method. Aviat. Weapon 2014, 3, 51–54. [Google Scholar]
- Liu, R.; Wang, D.; Zhou, D.; Jia, P. Point target detection based on multiscale morphological filtering and an energy concentration criterion. Appl. Opt. 2017, 56, 6796–6805. [Google Scholar] [CrossRef] [PubMed]
- Samson, V.; Champagnat, F.; Giovannelli, J.F. Point target detection and subpixel position estimation in optical imagery. Appl. Opt. 2004, 43, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wang, J.; Yang, Z.; Ku, Y.; Ren, X.; Zhang, C. Infrared small target energy distribution modeling for 2D subpixel motion and target energy compensation detection. Opt. Eng. 2022, 61, 013104. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Han, W.; Chen, J.; Wang, L.; Feng, R.; Li, F.; Wu, L.; Tian, T.; Yan, J. Methods for small, weak object detection in optical high-resolution remote sensing images: A survey of advances and challenges. IEEE Geosci. Remote Sens. Mag. 2021, 9, 8–34. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, S.; Fu, W. A review of visual moving target tracking. Multimed. Tools Appl. 2017, 76, 16989–17018. [Google Scholar] [CrossRef]
- Zhao, M.; Li, W.; Li, L.; Hu, J.; Ma, P.; Tao, R. Single-frame infrared small-target detection: A survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 87–119. [Google Scholar] [CrossRef]
- Moradi, S.; Memarmoghadam, A.; Moallem, P.; Sabahi, M.F. Assessing the applicability of common performance metrics for real-world infrared small-target detection. arXiv 2023, arXiv:2301.03796. [Google Scholar]
- Diao, W.H.; Mao, X.; Gui, V. Metrics for performance evaluation of preprocessing algorithms in infrared small target images. Prog. Electromagn. Res. 2011, 115, 35–53. [Google Scholar] [CrossRef]
- Soni, T.; Zeidler, J.R.; Ku, W.H. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data. IEEE Trans. Image Process. 1993, 2, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Guo, J.; Wang, C.; Su, Y.; Di, Y.; AbouOmar, M.S. Research on the visual image-based complexity perception method of autonomous navigation scenes for unmanned surface vehicles. Sci. Rep. 2022, 12, 10370. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Singh, P. Exploring the effect of normalization on medical data classification. In Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24–26 September 2021; pp. 1–5. [Google Scholar]
- Qu, X.; Chen, H.; Peng, G. Novel detection method for infrared small targets using weighted information entropy. J. Syst. Eng. Electron. 2012, 23, 838–842. [Google Scholar] [CrossRef]
- Hui, B.; Song, Z.; Fan, H.; Zhong, P.; Hu, W.; Zhang, X.; Lin, J.; Su, H.; Jin, W.; Zhang, Y.; et al. A Dataset for Infrared Image Dim-Small Aircraft Target Detection and Tracking under Ground/Air Background; Science Data Bank: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Rong, S.H.; Zhou, H.X.; Qin, H.L.; Wang, B.J.; Qian, K. A real-time tracking system of infrared dim and small target based on FPGA and DSP. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Infrared Technology and Applications, Beijing, China, 13–15 May 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9300, pp. 304–309. [Google Scholar]
HPR | ||||||||
---|---|---|---|---|---|---|---|---|
(a) | 0.0019 | 0.4677 | 1.4847 | 0.4330 | 0.2737 | 0.5653 | 0.4060 | 0.8675 |
(b) | 3.81 × 10−6 | 0.7733 | 2.7218 | 0.1737 | 0.2856 | 0.8575 | 0.1764 | 0.8683 |
(c) | 0.2610 | 0.8991 | 3.0797 | 0.1653 | 0.5424 | 0.8800 | 0.1959 | 0.8127 |
(d) | 0.0652 | 0.9836 | 4.7025 | 0.0487 | 4.8836 | 0.8385 | 0.0177 | 0.5227 |
Ref | Resolution | FPS | Throughput (Pixels/s) | LUT | DSP | Power (mW) |
---|---|---|---|---|---|---|
[4] | 320 × 240 | 25 | 1,920,000 | 2587 | ||
[5] | 500 × 500 | 104.2 | 26,050,000 | 8440 | 54 | 372 |
[7] | 256 × 256 | 56 | 3,670,016 | 35,573 | 48.7 | |
[1] | 320 × 240 | 204.1 | 15,674,880 | 19,401 | 4 | |
[6] | 640 × 480 | 30.3 | 9,308,160 | 24,936 | ||
[25] | 760 × 576 | 25 | 10,944,000 | 28,848 | ||
our | 256 × 256 | 3051 | 199,950,336 | 5301 | 38 | 292 |
Resolution | FPS |
---|---|
256 × 256 | 3051 |
1920 × 1080 | 96 |
2560 × 1440 | 54 |
3112 × 2048 | 30 |
4096 × 3112 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Z.; Jiang, Y.; Liu, K.; Li, Y.; Yao, X.; Huang, Z.; Zheng, W.; Zhang, J.; Zheng, F. Hardware-Accelerated Infrared Small Target Recognition Based on Energy-Weighted Local Uncertainty Measure. Appl. Sci. 2024, 14, 8798. https://doi.org/10.3390/app14198798
Wang X, Zhang Z, Jiang Y, Liu K, Li Y, Yao X, Huang Z, Zheng W, Zhang J, Zheng F. Hardware-Accelerated Infrared Small Target Recognition Based on Energy-Weighted Local Uncertainty Measure. Applied Sciences. 2024; 14(19):8798. https://doi.org/10.3390/app14198798
Chicago/Turabian StyleWang, Xiaoqing, Zhantao Zhang, Yujie Jiang, Kuanhao Liu, Yafei Li, Xuri Yao, Zixu Huang, Wei Zheng, Jingqi Zhang, and Fu Zheng. 2024. "Hardware-Accelerated Infrared Small Target Recognition Based on Energy-Weighted Local Uncertainty Measure" Applied Sciences 14, no. 19: 8798. https://doi.org/10.3390/app14198798
APA StyleWang, X., Zhang, Z., Jiang, Y., Liu, K., Li, Y., Yao, X., Huang, Z., Zheng, W., Zhang, J., & Zheng, F. (2024). Hardware-Accelerated Infrared Small Target Recognition Based on Energy-Weighted Local Uncertainty Measure. Applied Sciences, 14(19), 8798. https://doi.org/10.3390/app14198798