Discrimination Ability and Concentration Measurement Accuracy of Effective Components in Aroma Essential Oils Using Gas Sensor Arrays with Machine Learning
Abstract
:1. Introduction
2. Experimental
2.1. Sensor Arrays
2.2. Preparation of Target Gases
2.3. Sensor Response Measurement
2.4. Data Analysis
2.4.1. Machine Learning
2.4.2. Evaluating the Sensor Array Performance
3. Results and Discussion
3.1. Resistance Change as a Sensor Response
3.2. Variation of Dataset in PCA
3.3. Variation of Dataset in ANN
3.4. Importance of Gas Sensor Selection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasannejad, P.; Saeedi, M.; Shoeibi, A.; Gorji, A.; Abbasi, M.; Foroughipour, M. Lavender essential oil in the treatment of migraine headache: A placebo-controlled clinical trial. Eur. Neurol. 2012, 67, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Yogi, W.; Tsukada, M.; Sato, Y.; Izuno, T.; Inoue, T.; Tsunokawa, Y.; Okumo, T.; Hisamitsu, T.; Sunagawa, M. Influences of Lavender Essential Oil Inhalation on Stress Responses during Short-Duration Sleep Cycles: A Pilot Study. Healthcare 2021, 9, 909. [Google Scholar] [CrossRef] [PubMed]
- Karadag, E.; Samancioglu, W.; Ozden, E.; Bakir, E. Effects of aromatherapy on sleep quality and anxiety of patients. Nurs. Crit. Care 2015, 22, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Firoozeei, T.S.; Feizi, A.; Rezaeizadeh, H.; Zargaran, A.; Roohafza, H.R.; Karimi, M. The antidepressant effects of lavender (Lavandula angustifolia Mill.): A systematic review and meta-analysis of randomized controlled clinical trials. Complement. Ther. Med. 2021, 59, 102679. [Google Scholar] [CrossRef] [PubMed]
- Ballard, C.G.; O’Brien, J.T.; Reichelt, K.; Perry, E.K. Aromatherapy as a Safe and Effective Treatment for the Management of Agitation in Severe Dementia: The Results of a Double-Blind, Placebo-Controlled Trial with Melissa. J. Clin. Psychiatry 2002, 63, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Wake, G.; Savelev, S.; Tildesley, N.T.J.; Perry, E.K.; Wesnes, K.A.; Scholey, A.B. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology 2003, 28, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Melissa officinalis extract in the treatment ofpatients with mild to moderate Alzheimer’s disease:a double blind, randomised, placebo controlled trial. J. Neurol Neurosurg. Psychiatry 2003, 74, 863–866. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Little, W.; Scholey, A.B. Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (lemon balm). Psychosom. Med. 2004, 66, 607–613. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kikuzaki, H.; Nakatani, N. Antibacterial activity of essential oils and oleoresins of spices and herbs against pathogens bacteria in upper airway respiratory tract. Jpn. J. Food Chem. 2002, 9, 67–76. [Google Scholar]
- Hart, P.H.; Brand, C.; Carson, F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-J.; Chen, L.-W.; Chen, L.-G.; Chang, T.-L.; Huang, C.-W.; Huang, M.-C.; Wang, C.-C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal. 2013, 21, 169–176. [Google Scholar] [CrossRef]
- Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med. 2003, 97, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.; Orak, D.; Yilmaz, D.; Cimen, H.; Sipahi, H. Modulation of cigarette smoke extract-induced human bronchial epithelial damage by eucalyptol and curcumin. Human Experiment. Toxicol. 2021, 40, 1445–1462. [Google Scholar] [CrossRef]
- Essential Oils Market Size, Share & Trends Analysis Report By Product (Orange, Cornmint, Eucalyptus), by Application (Medical, Food & Beverages, Spa & Relaxation), by Sales Channel, by Region, and Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/essential-oils-market#:~:text=The%20global%20essential%20oils%20market,CAGR)%20of%207.6%25%20from%202024 (accessed on 2 September 2024).
- Koike, K. Phytotherapy; Kyoto Hirokawa, Co.: Kyoto, Japan, 2016; ISBN 978-4-906992-75-1. (In Japanese) [Google Scholar]
- Lavender Oil. Available online: https://aromesparfums.com/products/lavender-true (accessed on 14 December 2023).
- Pokajewicz, K.; Biało’n, M.; Svydenko, L.; Fedin, R.; Hudz, N. Chemical Composition of the Essential Oil of the New Cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules 2021, 26, 5681. [Google Scholar] [CrossRef] [PubMed]
- Melissa Oil. Available online: https://aromesparfums.com/products/melissa (accessed on 14 December 2023).
- Nurzyńska-Wierdak, R.; Bogucka-Kocka, A.; Szymczak, G. Volatile constituents of Melissa officinalis leaves determined by plantage. Nat. Prod. Commun. 2014, 9, 703–706. [Google Scholar]
- Tea Tree Oil. Available online: https://www.teatreeoil.co.jp/certificate-of-analysis-mc7e18/ (accessed on 14 December 2023).
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef]
- Eucalyptus. Available online: https://www.florihana.co.jp/?pid=159536207 (accessed on 14 December 2023).
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 7. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Sens. Actuators B Chem. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors 2021, 9, 142. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Palmieri, S.; Pelle, F.D.; Sergi, M.; Cichelli, A.; Mascini, M.; Compagnone, D. Piezoelectric peptide-hpDNA based electronic nose for the detection of terpenes; Evaluation of the aroma profile in different Cannabis sativa L. (hemp) samples. Sens. Actuators B Chem. 2020, 308, 127697. [Google Scholar] [CrossRef]
- Srivastava, A.; Dravid, V.P. On the performance evaluation of hybrid and mono-class sensor arrays in selective detection of VOCs: A comparative study. Sens. Actuators B Chem. 2006, 117, 244–252. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Choi, J.-S.; Yu, J.-B.; Lee, H.-R.; Jang, B.-K.; Byun, J.-G. Sensor array optimization techniques for exhaled breath analysis to discriminate diabetics using an electronic nose. ETRI J. 2018, 40, 802–812. [Google Scholar] [CrossRef]
- Vajdi, M.; Varidi, M.J.; Varidi, M.; Mohebbi, M. Using electronic nose to recognize fish spoilage with an optimum Classifier. J. Food. Meas. Charact. 2019, 13, 1205–1217. [Google Scholar] [CrossRef]
- Shiba, K.; Imamura, G.; Yoshikawa, G. Odor-Based Nanomechanical Discrimination of Fuel Oils Using a Single Type of Designed Nanoparticles with Nonlinear Viscoelasticity. ACS Omega 2021, 6, 23389–23398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xue, Y.; Sun, Q.; Zhang, T.; Chen, Y.; Yu, W.; Xiong, Y.; Wei, X.; Yu, G.; Wan, H.; et al. A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuators B Chem. 2021, 326, 128822. [Google Scholar] [CrossRef]
- Itoh, T.; Nakashima, T.; Akamatsu, T.; Izu, N.; Shin, W. Nonanal gas sensing properties of platinum, palladium, and gold-loaded tin oxide VOCs sensors. Sens. Actuators B Chem. 2013, 187, 135–141. [Google Scholar] [CrossRef]
- Itoh, T.; Izu, N.; Akamatsu, T.; Shin, W.; Miki, Y.; Hirose, Y. Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations. Sensors 2015, 15, 9427–9437. [Google Scholar] [CrossRef]
- Kadosaki, M.; Sakai, Y.; Tamura, I.; Matsubara, I.; Itoh, T. Development of Oxide Semiconductor Thick Film Gas Sensor for the Detection of Total Volatile Organic Compounds. Electron. Commun. Jpn. 2008, 128, 125–130. [Google Scholar] [CrossRef]
- Krishna, K.G.; Umadevi, G.; Parne, S.; Pothukanuri, N. Zinc oxide based gas sensors and their derivatives: A critical review. J. Mater. Chem. 2023, 11, 3906–3925. [Google Scholar] [CrossRef]
- Dai, Z.; Lee, C.-S.; Kim, B.-Y.; Kwak, C.-H.; Yoon, J.-W.; Jeong, H.-M.; Lee, J.-H. Honeycomb-like Periodic Porous LaFeO3 Thin Film Chemiresistors with Enhanced Gas-Sensing Performances. ACS Appl. Mater. Interfaces 2014, 6, 16217–16226. [Google Scholar] [CrossRef] [PubMed]
- Jaouali, I.; Hamrouni, H.; Moussa, N.; Nsib, M.F.; Centeno, M.A.; Bonavita, A.; Neri, G.; Leonardi, S.G. LaFeO3 ceramics as selective oxygen sensors at mild temperature. Ceram. Int. 2018, 44, 4183–4189. [Google Scholar] [CrossRef]
- Thirumalairajan, S.; Girija, K.; Mastelaro, V.R.; Ponpandian, N. Surface Morphology-Dependent Room-Temperature LaFeO3 Nanostructure Thin Films as Selective NO2 Gas Sensor Prepared by Radio Frequency Magnetron Sputtering. ACS Appl. Mater. Interfaces 2014, 6, 13917–13927. [Google Scholar] [CrossRef]
Sensor Name | Target Components |
---|---|
TGS 2600 | Air pollutions (cigarettes and cooking smells) |
TGS 2602 | Odor components (volatile organic compounds, ammonia, H2S, etc.) |
TGS 2603 | Malodorous components (amines, sulfides, etc.) |
TGS 2610 | Liquefied petroleum (LP) gas |
TGS 2611 | Methane |
TGS 2612 | Methane and LP gas |
TGS 2620 | Alcohol and solvent vapors |
TGS 2444 | Ammonia |
Sensor Name | Details |
---|---|
[Sensor type 1] working temperature: 420 °C | |
ZnO | n-type semiconductor |
ZnO + M | n-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded ZnO |
CeZr10 | n-type semiconductor (bulk-resistive type); 10%Zr-doped CeO2 |
CeZr10 + M | n-type semiconductor (bulk-resistive type); 3 wt%Pt-loaded CeZr10 |
[Sensor type 2] working temperature: 300 °C | |
SnO2 + M_A * | n-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded SnO2 |
SnO2 + M_B * | n-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded SnO2 |
LaFeO3 | p-type semiconductor |
LaFeO3 + M | p-type semiconductor; 1 wt%Pt, 1 wt%Pd, and 1 wt%Au-loaded LaFeO3 |
Gas No. *1 | Concentration [ppm] | |||
---|---|---|---|---|
Lv. 1 (D-02) | Lv. 2 (D-03) | Lv. 3 (D-04) | Lv. 4 (D-05) | |
1 | 0.092 | 0.26 | 0.53 | 0.77 |
2 | 0.34 | 0.78 | 1.4 | 2.7 |
3 | 0.50 | 0.92 | 1.7 | 2.3 |
4 | 0.064 | 0.088 | 0.16 | 0.26 |
5 | 0.41 | 0.89 | 1.5 | 2.5 |
6 | 0.37 | 0.78 | 1.3 | 2.2 |
7 | 0.95 | 2.2 | 3.8 | 6.6 |
8 | 0.62 | 1.3 | 2.5 | 4.6 |
9 | 0.277 *2 | 0.58 | 1.26 | 2.4 |
10 | 0.12 | 0.18 | 0.36 | 0.74 |
11 | 0.091 | 0.14 | 0.28 | 0.58 |
12 | 0.067 | 0.16 | 0.283 *2 | 0.43 |
13 | 0.033 | 0.039 | 0.076 | 0.14 |
Correct Answer Rate | ||||
---|---|---|---|---|
Sensor Array C | Sensor Array L | |||
1 min dataset | Single gas [676 data] | 1 | 1 | |
Double gases [4056 data] | The first concentration component | 0.984 | 0.993 | |
The second concentration component | 0.971 | 0.988 | ||
12 min dataset | Single gas [676 data] | 0.988 | 0.997 | |
Double gases [4056 data] | The first concentration component | 0.967 | 0.986 | |
The second concentration component | 0.927 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itoh, T.; Choi, P.G.; Masuda, Y.; Shin, W.; Arai, J.; Takeda, N. Discrimination Ability and Concentration Measurement Accuracy of Effective Components in Aroma Essential Oils Using Gas Sensor Arrays with Machine Learning. Appl. Sci. 2024, 14, 8859. https://doi.org/10.3390/app14198859
Itoh T, Choi PG, Masuda Y, Shin W, Arai J, Takeda N. Discrimination Ability and Concentration Measurement Accuracy of Effective Components in Aroma Essential Oils Using Gas Sensor Arrays with Machine Learning. Applied Sciences. 2024; 14(19):8859. https://doi.org/10.3390/app14198859
Chicago/Turabian StyleItoh, Toshio, Pil Gyu Choi, Yoshitake Masuda, Woosuck Shin, Junichirou Arai, and Nobuaki Takeda. 2024. "Discrimination Ability and Concentration Measurement Accuracy of Effective Components in Aroma Essential Oils Using Gas Sensor Arrays with Machine Learning" Applied Sciences 14, no. 19: 8859. https://doi.org/10.3390/app14198859
APA StyleItoh, T., Choi, P. G., Masuda, Y., Shin, W., Arai, J., & Takeda, N. (2024). Discrimination Ability and Concentration Measurement Accuracy of Effective Components in Aroma Essential Oils Using Gas Sensor Arrays with Machine Learning. Applied Sciences, 14(19), 8859. https://doi.org/10.3390/app14198859