Improving the Impact Resistance of Anti-Ram Bollards Using Auxetic and Honeycomb Cellular Cores
Abstract
:1. Introduction
- Numerical modeling of hollow-steel bollards during sudden vehicle impact.
- Introducing a new cost-effective bollard with a honeycomb cellular core.
- Improving the impact absorption of the steel bollard using an auxetic cellular core.
2. Case Study and Modelling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 15 June 2024).
- Ahmed, S.K.; Mohammed, M.G.; Abdulqadir, S.O.; El-Kader, R.G.A.; El-Shall, N.A.; Chandran, D.; Rehman, M.E.U.; Dhama, K. Road traffic accidental injuries and deaths: A neglected global health issue. Health Sci. Rep. 2023, 6, e1240. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, G.-q.; Sun, J.-y. Numerical investigation of K4-rating shallow footing fixed anti-ram bollard system subjected to vehicle impact. Int. J. Impact Eng. 2014, 63, 72–87. [Google Scholar] [CrossRef]
- Nagel, G. Impact and Energy Absorption of Straight and Tapered Rectangular Tubes. Ph.D. Thesis, Queensland University of Technology, Brisbane City, Australia, 2005. [Google Scholar]
- Maduliat, S.; Ngo, T.D.; Tran, P.; Lumantarna, R. Performance of hollow steel tube bollards under quasi-static and lateral impact load. Thin-Walled Struct. 2015, 88, 41–47. [Google Scholar] [CrossRef]
- Maduliat, S.; Ngo, T.D.; Tran, P. Energy absorption of steel hollow tubes under bending. Proc. Inst. Civ. Eng.-Struct. Build. 2015, 168, 930–942. [Google Scholar] [CrossRef]
- ISO22343-1:2023; Security and Resilience—Vehicle Security Barriers: Part 1: Performance Requirement, Vehicle Impact Test Method and Performance Rating. International Organization for Standardization (ISO): Geneva, Switzerland, 2023.
- PAS 68:2013; Impact Test Specifications for Vehicle Security Barrier Systems. The British Standards Institution (BSI): London, UK, 2013.
- ASTM F2656; Standard Test Method for Crash Testing of Vehicle Security Barriers. American Society for Testing and Materials (ASTM): Philadelphia, PA, USA, 2020.
- Al-Rifaie, H.; Studziński, R.; Gajewski, T.; Malendowski, M.; Sumelka, W.; Sielicki, P.W. A new blast absorbing sandwich panel with unconnected corrugated layers—Numerical study. Energies 2021, 14, 214. [Google Scholar] [CrossRef]
- Costanza, G.; Solaiyappan, D.; Tata, M.E. Properties, applications and recent developments of cellular solid materials: A review. Materials 2023, 16, 7076. [Google Scholar] [CrossRef]
- Sarikaya, M.; Gunnison, K.; Yasrebi, M.; Aksay, I. Mechanical property-microstructural relationships in abalone shell. MRS Online Proc. Libr. 1989, 174, 109–116. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, R.; Jindal, U. Mechanical behaviour of bamboo and bamboo composite. J. Mater. Sci. 1992, 27, 4598–4604. [Google Scholar] [CrossRef]
- Wang, A.-J.; McDowell, D. In-plane stiffness and yield strength of periodic metal honeycombs. J. Eng. Mater. Technol. 2004, 126, 137–156. [Google Scholar] [CrossRef]
- Kintscher, M.; Kärger, L.; Wetzel, A.; Hartung, D. Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1288–1295. [Google Scholar] [CrossRef]
- Nilsson, E.; Nilsson, A. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores. J. Sound Vib. 2002, 251, 409–430. [Google Scholar] [CrossRef]
- Xu, X.F.; Qiao, P.; Davalos, J.F. Transverse shear stiffness of composite honeycomb core with general configuration. J. Eng. Mech. 2001, 127, 1144–1151. [Google Scholar] [CrossRef]
- Hohe, J.; Becker, W. Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties. Appl. Mech. Rev. 2002, 55, 61–87. [Google Scholar] [CrossRef]
- Hu, L.; You, F.; Yu, T. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 2013, 46, 511–523. [Google Scholar] [CrossRef]
- Ruan, D.; Lu, G.; Wang, B.; Yu, T. In-plane dynamic crushing of honeycombs—A finite element study. Int. J. Impact Eng. 2003, 28, 161–182. [Google Scholar] [CrossRef]
- Papka, S.D.; Kyriakides, S. In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 1994, 42, 1499–1532. [Google Scholar] [CrossRef]
- Olympio, K.R.; Gandhi, F. Flexible skins for morphing aircraft using cellular honeycomb cores. J. Intell. Mater. Syst. Struct. 2010, 21, 1719–1735. [Google Scholar] [CrossRef]
- Olympio, K.R.; Gandhi, F. Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. J. Intell. Mater. Syst. Struct. 2010, 21, 1737–1753. [Google Scholar] [CrossRef]
- Ju, J.; Kim, D.-M.; Kim, K. Flexible cellular solid spokes of a non-pneumatic tire. Compos. Struct. 2012, 94, 2285–2295. [Google Scholar] [CrossRef]
- Daryabeigi, K. Heat transfer in adhesively bonded honeycomb core panels. J. Thermophys. Heat Transf. 2002, 16, 217–221. [Google Scholar] [CrossRef]
- Lu, T. Heat transfer efficiency of metal honeycombs. Int. J. Heat Mass Transf. 1999, 42, 2031–2040. [Google Scholar] [CrossRef]
- Kim, M.; Choe, J. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb. Compos. Struct. 2016, 158, 227–234. [Google Scholar] [CrossRef]
- Davis, E. Designing honeycomb panels for noise control. In Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue, WA, USA, 10–12 May 1999; p. 1917. [Google Scholar]
- Grosveld, F.W.; Mixson, J.S. Noise transmission through an acoustically treated and honeycomb-stiffened aircraft sidewall. J. Aircr. 1985, 22, 434–440. [Google Scholar] [CrossRef]
- Seon, S.; Kim, K.; Bae, C.; Yi, W. A study on shock absorption characteristics of honeycomb-inserted bollards. Appl. Sci. 2020, 10, 3014. [Google Scholar] [CrossRef]
- Novak, N.; Al-Rifaie, H.; Airoldi, A.; Krstulović-Opara, L.; Łodygowski, T.; Ren, Z.; Vesenjak, M. Quasi-static and impact behaviour of foam-filled graded auxetic panel. Int. J. Impact Eng. 2023, 178, 104606. [Google Scholar]
- Al-Rifaie, H. Novel energy-absorbing auxetic sandwich panel with detached corrugated aluminium layers. Vib. Phys. Syst. 2023, 34, 2023215. [Google Scholar] [CrossRef]
- Subramani, P.; Rana, S.; Oliveira, D.V.; Fangueiro, R.; Xavier, J. Development of novel auxetic structures based on braided composites. Mater. Des. 2014, 61, 286–295. [Google Scholar] [CrossRef]
- Gohar, S.; Hussain, G.; Ilyas, M.; Ali, A. Performance of 3D printed topologically optimized novel auxetic structures under compressive loading: Experimental and FE analyses. J. Mater. Res. Technol. 2021, 15, 394–408. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Novak, N.; Vesenjak, M.; Ren, Z.; Sumelka, W. Fabrication and Mechanical Testing of the Uniaxial Graded Auxetic Damper. Materials 2022, 15, 387. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H. A review on auxetic structures and polymeric materials. Sci. Res. Essays 2010, 5, 1052–1063. [Google Scholar]
- Sanami, M.; Ravirala, N.; Alderson, K.; Alderson, A. Auxetic materials for sports applications. Procedia Eng. 2014, 72, 453–458. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Sumelka, W. Auxetic Damping Systems for Blast Vulnerable Structures. In Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–375. [Google Scholar]
- Körner, C.; Liebold-Ribeiro, Y. A systematic approach to identify cellular auxetic materials. Smart Mater. Struct. 2014, 24, 025013. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Sumelka, W. The developement of a new shock absorbing Uniaxial Graded Auxetic Damper (UGAD). Materials 2019, 12, 2573. [Google Scholar] [CrossRef] [PubMed]
- Novak, N.; Vesenjak, M.; Ren, Z. Auxetic cellular materials-a review. Stroj. Vestn.-J. Mech. Eng. 2016, 62, 485–493. [Google Scholar] [CrossRef]
- Novak, N.; Vesenjak, M.; Tanaka, S.; Hokamoto, K.; Ren, Z. Compressive behaviour of chiral auxetic cellular structures at different strain rates. Int. J. Impact Eng. 2020, 141, 103566. [Google Scholar] [CrossRef]
- Duncan, O.; Shepherd, T.; Moroney, C.; Foster, L.; Venkatraman, P.D.; Winwood, K.; Allen, T.; Alderson, A. Review of auxetic materials for sports applications: Expanding options in comfort and protection. Appl. Sci. 2018, 8, 941. [Google Scholar] [CrossRef]
- Photiou, D.; Avraam, S.; Sillani, F.; Verga, F.; Jay, O.; Papadakis, L. Experimental and numerical analysis of 3d printed polymer tetra-petal auxetic structures under compression. Appl. Sci. 2021, 11, 10362. [Google Scholar] [CrossRef]
- Luo, C.; Han, C.Z.; Zhang, X.Y.; Zhang, X.G.; Ren, X.; Xie, Y.M. Design, manufacturing and applications of auxetic tubular structures: A review. Thin-Walled Struct. 2021, 163, 107682. [Google Scholar] [CrossRef]
- Song, Z.; Liang, H.; Ding, H.; Ma, M. Structure design and mechanical properties of a novel anti-collision system with negative Poisson’s ratio core. Int. J. Mech. Sci. 2023, 239, 107864. [Google Scholar]
- Zhou, G.; Zhao, W.; Li, Q.; Shen, W.; Wang, C. Multi-objective robust design optimization of a novel NPR energy absorption structure for vehicles front ends to enhance pedestrian lower leg protection. Struct. Multidiscip. Optim. 2017, 56, 1215–1224. [Google Scholar]
- Tan, H.; He, Z.; Li, E.; Cheng, A.; Chen, T.; Tan, X.; Li, Q.; Xu, B. Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box. Struct. Multidiscip. Optim. 2021, 64, 2009–2024. [Google Scholar] [CrossRef]
- Apak, M.Y.; Ergun, M.; Ozen, H.; Buyuk, M.; Ozcanan, S.; Atahan, A.O.; Yumrutas, H.I. Finite element simulation and failure analysis of fixed bollard system according to the PAS 68: 2013 standard. Eng. Fail. Anal. 2022, 135, 106151. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Grazka, M.; Janiszewski, J. Identification of Johnson-Cook Equation Constants using Finite Element Method. Eng. Trans. 2012, 60, 215–223. [Google Scholar]
- Shrot, A.; Bäker, M. Determination of Johnson–Cook parameters from machining simulations. Comput. Mater. Sci. 2012, 52, 298–304. [Google Scholar] [CrossRef]
- Børvik, T.; Hopperstad, O.; Berstad, T.; Langseth, M. A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Mech.-A/Solids 2001, 20, 685–712. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Sumelka, W. Improving the Blast Resistance of Large Steel Gates-Numerical Study. Materials 2020, 13, 2121. [Google Scholar] [CrossRef]
- Flores-Johnson, E.; Shen, L.; Guiamatsia, I.; Nguyen, G.D. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Compos. Sci. Technol. 2014, 96, 13–22. [Google Scholar] [CrossRef]
Category | Constant | Description | Unit | Weldox 460E | AL7075-T651 |
---|---|---|---|---|---|
Elastic constants | E | Modulus of elasticity | 200 | 70 | |
ν | Poisson’s ratio | - | 0.33 | 0.3 | |
Density | ρ | Mass density | 7850 | 2700 | |
Yield stress and strain hardening | A | Yield strength | 490 | 520 | |
B | Ultimate strength | 807 | 477 | ||
n | Work-hardening exponent | - | 0.73 | 0.52 | |
Strain-rate hardening | Reference strain rate | 5 × | 5 × 10−4 | ||
C | Strain rate factor | - | 0.0114 | 0.001 | |
Damage evolution | Critical damage | - | 0.3 | 0.3 | |
Damage threshold | - | 0 | 0 | ||
Adiabatic heating and temperature softening | Specific heat | 452 × | 910 × 106 | ||
χ | Taylor–Quinney empirical constant/inelastic heat fraction | - | 0.9 | 0.9 | |
Melting temperature | 1800 | 893 | |||
Room temperature | 293 | 293 | |||
m | Thermal-softening exponent | - | 0.94 | 1.0 | |
Fracture strain constants | - | - | 0.0705 | 0.096 | |
- | - | 1.732 | 0.049 | ||
- | - | −0.54 | −3.465 | ||
- | - | −0.015 | 0.016 | ||
- | - | 0 | 1.099 |
Finite Element Size [mm] | |||
---|---|---|---|
30 | 20 | 10 | |
Speed (km/h) | U (mm) | Hollow-Steel | Honeycomb-Core | Auxetic-Core |
---|---|---|---|---|
16 | ||||
32 | ||||
48 | ||||
64 | ||||
80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rifaie, H.; Hassan, A. Improving the Impact Resistance of Anti-Ram Bollards Using Auxetic and Honeycomb Cellular Cores. Appl. Sci. 2024, 14, 8898. https://doi.org/10.3390/app14198898
Al-Rifaie H, Hassan A. Improving the Impact Resistance of Anti-Ram Bollards Using Auxetic and Honeycomb Cellular Cores. Applied Sciences. 2024; 14(19):8898. https://doi.org/10.3390/app14198898
Chicago/Turabian StyleAl-Rifaie, Hasan, and Ahmed Hassan. 2024. "Improving the Impact Resistance of Anti-Ram Bollards Using Auxetic and Honeycomb Cellular Cores" Applied Sciences 14, no. 19: 8898. https://doi.org/10.3390/app14198898
APA StyleAl-Rifaie, H., & Hassan, A. (2024). Improving the Impact Resistance of Anti-Ram Bollards Using Auxetic and Honeycomb Cellular Cores. Applied Sciences, 14(19), 8898. https://doi.org/10.3390/app14198898