Design and Multi-Objective Optimization of Auxetic Sandwich Panels for Blastworthy Structures Using Machine Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry Description
2.2. Numerical Modeling
2.2.1. Geometry, Boundary Conditions, and Contact Modeling
2.2.2. Material Modeling
2.2.3. Blast Load Modeling
2.3. Machine Learning Model
2.3.1. Metamodel
2.3.2. Multi-Objective Optimization
2.3.3. Sensitivity Analysis
3. Results and Discussion
3.1. Numerical Validation
3.1.1. Validation and Comparison of Air-Blast Model
3.1.2. Validation of Sandwich Panels
3.2. Metamodel and Multi-Objective Optimization
3.2.1. Design Variables, Objective Function, and Constraint
3.2.2. Metamodel Accuracy
3.2.3. Global Sensitivity Analysis
3.2.4. Pareto Front and Optimal Solution
3.3. Discussions
3.3.1. Comparative Analysis
3.3.2. Blastworthiness Analysis
3.4. Application of the Optimized Auxetic Sandwich Panel for Armored Fighting Vehicle Protection
3.4.1. Numerical Model of an Armored Fighting Vehicle
3.4.2. Simulation Results
4. Conclusions
- The ANN metamodel that was formed was proven to be accurate in predicting the blastworthiness performance of ASPs. The optimization process using NSGA-II produces optimal designs efficiently. The optimization results shows that the permanent displacement conflicts with the SEA.
- Global sensitivity analysis using the SHapley Additive exPlanations (SHAP) method indicates that cell thickness in ASPs is the primary factor influencing blastworthiness performance, significantly affecting stiffness and plastic-bending moments within auxetic cells. Meanwhile, the corner angle and node radius in the CH model are identified as the least influential variables.
- The configuration of auxetic structures enables effective energy absorption, enhancing the blast resistance of sandwich structures, as the material flows toward the impact zone. The occurrence of global negative Poisson’s ratio (NPR) behavior in ASPs under air-blast loading is influenced by rapid and high-velocity blast impulses, leading to localized unit cell collapse near the blast source. Generally, the REH and CH models exhibit more dominant NPR behavior at lower relative densities.
- Multi-objective optimization substantially enhances blastworthiness performance. Compared to baseline models, optimization achieves SEA improvements ranging from 26.21% to 83.68% for equivalent permanent displacements and reduces permanent displacement by 12.55% to 35.60% for equivalent SEA. The balanced REH and DAH models outperform baseline models in SEA only by 98.06% and 47.84%, respectively, while SH and CH models exhibit improvements in both permanent displacement (4.63–11.86%) and SEA (13.14–49.37%). Furthermore, the optimized ASP outperforms the optimized aluminum foam sandwich panel (AFSP) in SEA by 133.33–156.86%. However, only optimized DAH and SH produce better permanent displacement reduction by 36.71% and 6.49%, respectively. Among the four auxetic configurations, the DAH structure offers the best blastworthiness performance.
- ASPs demonstrate promising results in armored fighting vehicle (AFV) applications, meeting structural integrity requirements effectively. In dynamic response scenarios, optimized ASP DAH significantly reduce maximum displacement and acceleration of occupant floors by 39.00–56.99% and 43.56–52.55%, respectively, compared to other structures. The AFV subsystem incorporating optimized ASP DAH achieves a 48.30% increase in SEA over optimized AFSP and a remarkable 335.00% increase over single plates. This indicates that the auxetic core exhibits superior energy absorption capabilities compared to aluminum foam cores and single plates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krzystała, E.; Mężyk, A.; Kciuk, S. Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast. Int. J. Inj. Control Saf. Promot. 2014, 23, 170–178. [Google Scholar] [CrossRef] [PubMed]
- ICBL. Landmine Monitor. 2023. Available online: https://backend.icblcmc.org/assets/reports/Landmine-Monitors/LMM2023/Downloads/Landmine-Monitor-2023_web.pdf (accessed on 17 July 2024).
- Nurick, G.; Martin, J. Deformation of thin plates subjected to impulsive loading—A review: Part I: Theoretical considerations. Int. J. Impact Eng. 1989, 8, 159–170. [Google Scholar] [CrossRef]
- Nurick, G.; Martin, J. Deformation of thin plates subjected to impulsive loading—A review. Part II: Experimental studies. Int. J. Impact Eng. 1989, 8, 171–186. [Google Scholar] [CrossRef]
- Nurick, G.; Shave, G. The deformation and tearing of thin square plates subjected to impulsive loads—An experimental study. Int. J. Impact Eng. 1996, 18, 99–116. [Google Scholar] [CrossRef]
- Børvik, T.; Olovsson, L.; Hanssen, A.; Dharmasena, K.; Hansson, H.; Wadley, H. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates. J. Mech. Phys. Solids 2011, 59, 940–958. [Google Scholar] [CrossRef]
- Chung Kim Yuen, S.; Nurick, G. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: Subjected to uniform blast load. Int. J. Impact Eng. 2005, 31, 55–83. [Google Scholar] [CrossRef]
- Goel, M.D.; Matsagar, V.A.; Gupta, A.K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam. Int. J. Impact Eng. 2015, 77, 134–146. [Google Scholar] [CrossRef]
- Chung Kim Yuen, S.; Langdon, G.; Nurick, G.; Pickering, E.; Balden, V. Response of V-shape plates to localised blast load: Experiments and numerical simulation. Int. J. Impact Eng. 2012, 46, 97–109. [Google Scholar] [CrossRef]
- Cong, M.; Zhou, Y.; Zhang, M.; Sun, X.; Chen, C.; Ji, C. Design and optimization of multi-V hulls of light armoured vehicles under blast loads. Thin-Walled Struct. 2021, 168, 108311. [Google Scholar] [CrossRef]
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; Taylor & Francis: Philadelphia, PA, USA, 1998. [Google Scholar]
- Dharmasena, K.P.; Wadley, H.N.; Xue, Z.; Hutchinson, J.W. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 2008, 35, 1063–1074. [Google Scholar] [CrossRef]
- Zhu, F.; Zhao, L.; Lu, G.; Wang, Z. Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations. Int. J. Impact Eng. 2008, 35, 937–951. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Cheng, Y.; Hou, H.; Wang, C.; Li, Y. Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading—An experimental study. Mater. Des. 2015, 65, 221–230. [Google Scholar] [CrossRef]
- Shen, J.; Lu, G.; Wang, Z.; Zhao, L. Experiments on curved sandwich panels under blast loading. Int. J. Impact Eng. 2010, 37, 960–970. [Google Scholar] [CrossRef]
- Jing, L.; Wang, Z.; Shim, V.; Zhao, L. An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading. Int. J. Impact Eng. 2014, 71, 60–72. [Google Scholar] [CrossRef]
- Pratomo, A.N.; Santosa, S.P.; Gunawan, L.; Widagdo, D.; Putra, I.S. Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8 kg TNT blast loading. Int. J. Impact Eng. 2020, 146, 103699. [Google Scholar] [CrossRef]
- Hanssen, A.; Enstock, L.; Langseth, M. Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 2002, 27, 593–618. [Google Scholar] [CrossRef]
- Liu, H.; Cao, Z.; Yao, G.; Luo, H.; Zu, G. Performance of aluminum foam–steel panel sandwich composites subjected to blast loading. Mater. Des. 2013, 47, 483–488. [Google Scholar] [CrossRef]
- Lakes, R.; Elms, K. Indentability of Conventional and Negative Poisson’s Ratio Foams. J. Compos. Mater. 1993, 27, 1193–1202. [Google Scholar] [CrossRef]
- Alderson, K.L.; Fitzgerald, A.; Evans, K.E. The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci. 2000, 35, 4039–4047. [Google Scholar] [CrossRef]
- Lakes, R.S. Design Considerations for Materials with Negative Poisson’s Ratios. J. Mech. Des. 1993, 115, 696–700. [Google Scholar] [CrossRef]
- Scarpa, F.; Tomlin, P.J. On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 717–720. [Google Scholar] [CrossRef]
- Lakes, R. Foam Structures with a Negative Poisson’s Ratio. Science 1987, 235, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.B.; Lakes, R.S. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract. 1996, 80, 73–83. [Google Scholar] [CrossRef]
- Bianchi, M.; Scarpa, F.L.; Smith, C.W. Stiffness and energy dissipation in polyurethane auxetic foams. J. Mater. Sci. 2008, 43, 5851–5860. [Google Scholar] [CrossRef]
- Howell, B.; Prendergast, P.; Hansen, L. Examination of acoustic behavior of negative poisson’s ratio materials. Appl. Acoust. 1994, 43, 141–148. [Google Scholar] [CrossRef]
- Fang, S.; Du, H.; Yan, T.; Chen, K.; Li, Z.; Ma, X.; Lai, Z.; Zhou, S. Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting. Appl. Energy 2024, 356, 122395. [Google Scholar] [CrossRef]
- Ma, F.; Wang, C.; Liu, C.; Wu, J.H. Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 2021, 129, 231103. [Google Scholar] [CrossRef]
- Saxena, K.K.; Das, R.; Calius, E.P. Three Decades of Auxetics Research–Materials with Negative Poisson’s Ratio: A Review. Adv. Eng. Mater. 2016, 18, 1847–1870. [Google Scholar] [CrossRef]
- Imbalzano, G.; Linforth, S.; Ngo, T.D.; Lee, P.V.S.; Tran, P. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Compos. Struct. 2018, 183, 242–261. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Yan, J.; Wang, B.; Bai, F.; Shi, Z.; Huang, F. Anti-blast performance of 3D-printed sandwich panels with auxetic hexagonal and regular hexagonal honeycomb cores. Eng. Struct. 2022, 272, 114996. [Google Scholar] [CrossRef]
- Lan, X.; Feng, S.; Huang, Q.; Zhou, T. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores. Aerosp. Sci. Technol. 2019, 87, 37–47. [Google Scholar] [CrossRef]
- Qi, C.; Remennikov, A.; Pei, L.Z.; Yang, S.; Yu, Z.H.; Ngo, T.D. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations. Compos. Struct. 2017, 180, 161–178. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, Y.; Zhang, P.; Cai, S.; Liu, J. Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading. Int. J. Mech. Sci. 2021, 201, 106457. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, P.; Deng, N.; Cai, S.; Cheng, Y.; Liu, J. Paper tube-guided blast response of sandwich panels with auxetic re-entrant and regular hexagonal honeycomb cores—An experimental study. Eng. Struct. 2022, 253, 113790. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Yan, J.; Wu, W.; Bai, F.; Huang, F. Blast performance of 3D-printed auxetic honeycomb sandwich beams. Thin-Walled Struct. 2023, 193, 111257. [Google Scholar] [CrossRef]
- Vyavahare, S.; Teraiya, S.; Kumar, S. FDM manufactured auxetic structures: An investigation of mechanical properties using machine learning techniques. Int. J. Solids Struct. 2023, 265–266, 112126. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, A.; Wang, H.; Liu, C. Machine learning guided design of mechanically efficient metamaterials with auxeticity. Mater. Today Commun. 2024, 39, 108944. [Google Scholar] [CrossRef]
- Kumar, S.; Jin, H.; Lim, K.M.; Lee, H.P. Comparative analysis of machine learning algorithms on prediction of the sound absorption coefficient for reconfigurable acoustic meta-absorbers. Appl. Acoust. 2023, 212, 109603. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, H.; Dong, Q. Machine learning-based inverse design of auxetic metamaterial with zero Poisson’s ratio. Mater. Today Commun. 2022, 30, 103186. [Google Scholar] [CrossRef]
- Oladipo, B.; Matos, H.; Krishnan, N.A.; Das, S. Integrating experiments, finite element analysis, and interpretable machine learning to evaluate the auxetic response of 3D printed re-entrant metamaterials. J. Mater. Res. Technol. 2023, 25, 1612–1625. [Google Scholar] [CrossRef]
- Afdhal; Jirousek, O.; Palar, P.S.; Falta, J.; Dwianto, Y.B. Design exploration of additively manufactured chiral auxetic structure using explainable machine learning. Mater. Des. 2023, 232, 112128. [Google Scholar] [CrossRef]
- Bronder, S.; Herter, F.; Bähre, D.; Jung, A. Optimized design for modified auxetic structures based on a neural network approach. Mater. Today Commun. 2022, 32, 103931. [Google Scholar] [CrossRef]
- Qi, C.; Yang, S.; Yang, L.J.; Han, S.H.; Lu, Z.H. Dynamic response and optimal design of curved metallic sandwich panels under blast loading. Sci. World J. 2014, 2014, 853681. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Li, Q.; Sun, G. Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance. Thin-Walled Struct. 2020, 147, 106494. [Google Scholar] [CrossRef]
- Qi, C.; Pei, L.Z.; Remennikov, A.; Yang, S.; Liu, J.; Wang, J.S.; Liao, X.W. Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact. Compos. Struct. 2020, 252, 112711. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, S.; Qi, C.; Liu, H.T.; Remennikov, A.; Pei, L.Z. Blast response and multi-objective optimization of graded re-entrant circular auxetic cored sandwich panels. Compos. Struct. 2023, 305, 116494. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Zhou, G.; Wang, C. Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading. Int. J. Mech. Sci. 2018, 142–143, 245–254. [Google Scholar] [CrossRef]
- Lan, X.; Huang, Q.; Zhou, T.; Feng, S. Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading. Def. Technol. 2020, 16, 617–626. [Google Scholar] [CrossRef]
- Walkowiak, M.; Reinicke, U.; Anders, D. Numerical Investigation of Different Core Topologies in Sandwich-Structured Composites Subjected to Air-Blast Impact. Appl. Sci. 2022, 12, 9012. [Google Scholar] [CrossRef]
- Pratomo, A.N.; Santosa, S.P.; Gunawan, L.; Widagdo, D.; Putra, I.S. Design optimization and structural integrity simulation of aluminum foam sandwich construction for armored vehicle protection. Compos. Struct. 2021, 276, 114461. [Google Scholar] [CrossRef]
- Lee, S.; Barthelat, F.; Hutchinson, J.; Espinosa, H. Dynamic failure of metallic pyramidal truss core materials— Experiments and modeling. Int. J. Plast. 2006, 22, 2118–2145. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Hu, Y.; Wang, S. Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel. Int. J. Mach. Tools Manuf. 2018, 130–131, 36–48. [Google Scholar] [CrossRef]
- Cockcroft, M.; Lathan, D. Ductility and the Workability of Metals; Academic Press: Cambridge, MA, USA, 1968. [Google Scholar]
- Kingery, C.N.; Bulmash, G. Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst; Technical Report ARBRL; U.S. Army Armament and Development Center, Ballistic Research Laboratory: Aberdeen, MD, USA, 1984. [Google Scholar]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Lucy, L.B. Numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Dobratz, B.; Crawford, P.; Lawrence Livermore National Laboratory. LLNL Explosives Handbook: Properties of Chemical Explosi and Explosive Stimulants; UCRL-52997; Univ. California: Livermore, CA, USA, 1985. [Google Scholar]
- Bhoskar, M.T.; Kulkarni, M.O.K.; Kulkarni, M.N.K.; Patekar, M.S.L.; Kakandikar, G.; Nandedkar, V. Genetic Algorithm and its Applications to Mechanical Engineering: A Review. Mater. Today Proc. 2015, 2, 2624–2630. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Shapley, L.S. A Value for n-Person Games. In Contributions to the Theory of Games (AM-28); Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; Volume II, pp. 307–318. [Google Scholar] [CrossRef]
- Palar, P.S.; Dwianto, Y.B.; Zuhal, L.R.; Morlier, J.; Shimoyama, K.; Obayashi, S. Multi-objective design space exploration using explainable surrogate models. Struct. Multidiscip. Optim. 2024, 67, 38. [Google Scholar] [CrossRef]
- Department of Defense. Design and Analysis of Hardened Structures to Conventional Weapons Effects; UFC: Washington, DC, USA, 2002. [Google Scholar]
- Hu, L.; Zhou, M.; Deng, H. Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation. Thin-Walled Struct. 2018, 131, 373–384. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, X.; Yu, Q.; Zhang, W.; Zhu, G. In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation. Aerosp. Sci. Technol. 2021, 115, 106797. [Google Scholar] [CrossRef]
- STANAG 4569 (Edition 2); Protection Levels for Occupants of Armoured Vehicles. NATO: Brussels, Belgium, 2012.
- Jacob, N.; Nurick, G.; Langdon, G. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads. Eng. Struct. 2007, 29, 2723–2736. [Google Scholar] [CrossRef]
- Bohara, R.P.; Linforth, S.; Nguyen, T.; Ghazlan, A.; Ngo, T. Anti-blast and -impact performances of auxetic structures: A review of structures, materials, methods, and fabrications. Eng. Struct. 2023, 276, 115377. [Google Scholar] [CrossRef]
Geometry | Independent Variable | Dependent Variable | Constraint |
---|---|---|---|
REH | , , , t | ||
DAH | , , , t | ||
SH | , , , t | ||
CH | , , r, t | ||
E | A | B | n | C | m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(GPa) | (-) | (kg/m3) | (MPa) | (MPa) | (-) | (s−1) | (-) | (K) | (K) | (-) | (J/kg·K) | (-) | (K−1) |
200 | 0.3 | 7900 | 310 | 1872 | 0.96 | 0.001 | 0.016 | 293 | 1673 | 1 | 500 | 0.9 |
A | B | ||||||||
---|---|---|---|---|---|---|---|---|---|
(kg/m3) | (m/s) | (GPa) | (GPa) | (GPa) | (-) | (-) | (-) | (MJ/m3) | (-) |
1630 | 6930 | 21 | 371.2 | 3.231 | 4.15 | 0.95 | 0.3 | 7000 | 1 |
SoD (mm) | Exp. (mm) | CONWEP | SPH | MMALE | |||
---|---|---|---|---|---|---|---|
Sim. (mm) |
Err. (%) |
Sim. (mm) |
Err. (%) |
Sim. (mm) |
Err. (%) | ||
150 | 17 | 17.81 | 4.76 | 17.75 | 4.41 | 17.41 | 2.41 |
200 | 12.7 | 14.77 | 16.30 | 14.23 | 12.05 | 12.54 | −1.26 |
250 | 11.3 | 11.23 | −0.62 | 11.42 | 1.06 | 10.27 | −9.12 |
Specimen | Front Sheet | Back Sheet | ||||
---|---|---|---|---|---|---|
Exp. (mm) |
Sim. (mm) |
Err. (%) |
Exp. (mm) |
Sim. (mm) |
Err. (%) | |
TZ-2 | 28.81 | 27.97 | −2.92 | 14.14 | 15.19 | 7.43 |
TZ-4 | 34.33 | 30.89 | −10.02 | 19.81 | 18.37 | −7.27 |
TZ-5 | 25.35 | 24.00 | −5.33 | 11.47 | 11.39 | −0.70 |
TZ-6 | 29.55 | 27.65 | −6.43 | 16.17 | 16.46 | 1.79 |
TZ-7 | 26.77 | 26.86 | 0.34 | 13.33 | 14.02 | 5.18 |
TZ-8 | 31.07 | 29.49 | −5.09 | 17.15 | 17.15 | −0.06 |
TZ-9 | 26.94 | 26.09 | −3.16 | 13.00 | 13.81 | 6.23 |
TZ-10 | 29.90 | 28.13 | −5.92 | 16.49 | 17.64 | 6.97 |
TZ-11 | 27.37 | 25.71 | −6.07 | 13.91 | 14.38 | 3.38 |
TZ-12 | 23.98 | 23.49 | −2.04 | 16.23 | 17.65 | 8.75 |
TZ-13 | 35.72 | 34.53 | −3.33 | 11.26 | 11.07 | −1.69 |
Geometry | Design Constraint |
---|---|
REH | |
DAH | |
SH | |
CH |
Geometry | SEA | |||||
---|---|---|---|---|---|---|
MAX (mm) |
MSE (mm2) | (-) |
MAX (J/g) |
MSE (J2/g2) | (-) | |
REH | 3.059 | 0.713 | 0.991 | 0.418 | 0.009 | 0.996 |
DAH | 3.307 | 0.684 | 0.994 | 0.302 | 0.006 | 0.997 |
SH | 4.524 | 1.188 | 0.992 | 0.250 | 0.006 | 0.997 |
CH | 4.309 | 1.779 | 0.982 | 0.498 | 0.012 | 0.996 |
Geometry | Type | (-) | (-) | (°/mm) | t (mm) | (-) | SEA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pred. (mm) |
Sim. (mm) |
Err. (%) |
Pred. (J/g) |
Sim. (J/g) |
Err. (%) | |||||||
REH | Baseline | 15 | 4 | 30.0 | 1.00 | 0.115 | 27.50 | 27.64 | −0.51 | 2.13 | 2.06 | 3.40 |
Ideal min | 25 | 6 | 45.3 | 1.99 | 0.434 | 10.07 | 8.32 | 21.03 | 0.20 | 0.22 | −9.09 | |
Ideal max SEA | 5 | 2 | 0.1 | 0.54 | 0.022 | 49.96 | 50.89 | −1.83 | 8.52 | 8.58 | −0.70 | |
Balanced | 19 | 2 | 26.3 | 0.53 | 0.059 | 31.83 | 33.99 | −6.35 | 3.98 | 4.08 | −2.45 | |
Optimized | 9 | 3 | 61.5 | 1.63 | 0.203 | 18.58 | 17.92 | 3.68 | 1.40 | 1.19 | 17.65 | |
DAH | Baseline | 15 | 4 | 30.0 | 1.00 | 0.123 | 30.39 | 33.12 | −8.24 | 2.25 | 2.32 | −3.02 |
Ideal min | 23 | 6 | 0.1 | 2.00 | 0.310 | 3.16 | 2.93 | 7.85 | 0.64 | 0.63 | 1.59 | |
Ideal max SEA | 6 | 2 | 2.6 | 0.5 | 0.024 | 48.88 | 49.51 | −1.27 | 8.58 | 8.56 | 0.23 | |
Balanced | 25 | 2 | 0.1 | 0.68 | 0.070 | 31.56 | 33.90 | −6.90 | 3.66 | 3.43 | 6.71 | |
Optimized | 15 | 5 | 0.1 | 1.72 | 0.205 | 10.24 | 9.76 | 4.92 | 1.29 | 1.31 | −1.53 | |
SH | Baseline | 15 | 4 | 17.0 | 1.00 | 0.115 | 34.85 | 35.41 | −1.58 | 2.44 | 2.39 | 2.09 |
Ideal min | 20 | 6 | 16.1 | 2.00 | 0.328 | 11.33 | 11.78 | −3.82 | 0.72 | 0.65 | 10.77 | |
Ideal max SEA | 13 | 2 | 1.1 | 0.51 | 0.032 | 49.89 | 50.25 | −0.72 | 7.42 | 7.59 | −2.24 | |
Balanced | 25 | 2 | 0.6 | 0.89 | 0.081 | 32.76 | 33.77 | −2.99 | 3.69 | 3.57 | 3.36 | |
Optimized | 15 | 5 | 0.3 | 1.86 | 0.207 | 14.94 | 14.42 | 3.61 | 1.25 | 1.29 | −3.10 | |
CH | Baseline | 15 | 4 | 5.0 | 1.00 | 0.091 | 38.51 | 38.95 | −1.13 | 3.17 | 3.12 | 1.60 |
Ideal min | 25 | 6 | 6.3 | 2.00 | 0.346 | 14.64 | 11.81 | 23.96 | 0.42 | 0.53 | −20.75 | |
Ideal max SEA | 17 | 2 | 2.1 | 0.62 | 0.034 | 49.92 | 49.91 | 0.02 | 6.93 | 6.92 | 0.14 | |
Balanced | 18 | 3 | 14.5 | 0.66 | 0.072 | 32.57 | 34.33 | −5.13 | 3.61 | 3.53 | 2.27 | |
Optimized | 18 | 3 | 14.6 | 1.88 | 0.206 | 18.87 | 15.44 | 22.22 | 1.62 | 1.28 | 26.56 |
Parameter | Single Plate (20 mm) | Optimized AFSP | Optimized ASP DAH |
---|---|---|---|
Max. displ. (mm) | 156.56 | 110.40 | 67.34 |
(56.99% */39.00% **) | |||
SEA (J/g) | 0.60 | 1.76 | 2.61 |
(335.00% */48.30% **) | |||
Max. acc. (1000G) | 118.01 | 99.20 | 55.99 |
(52.55% */43.56% **) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andika; Santosa, S.P.; Widagdo, D.; Pratomo, A.N. Design and Multi-Objective Optimization of Auxetic Sandwich Panels for Blastworthy Structures Using Machine Learning Method. Appl. Sci. 2024, 14, 10831. https://doi.org/10.3390/app142310831
Andika, Santosa SP, Widagdo D, Pratomo AN. Design and Multi-Objective Optimization of Auxetic Sandwich Panels for Blastworthy Structures Using Machine Learning Method. Applied Sciences. 2024; 14(23):10831. https://doi.org/10.3390/app142310831
Chicago/Turabian StyleAndika, Sigit Puji Santosa, Djarot Widagdo, and Arief Nur Pratomo. 2024. "Design and Multi-Objective Optimization of Auxetic Sandwich Panels for Blastworthy Structures Using Machine Learning Method" Applied Sciences 14, no. 23: 10831. https://doi.org/10.3390/app142310831
APA StyleAndika, Santosa, S. P., Widagdo, D., & Pratomo, A. N. (2024). Design and Multi-Objective Optimization of Auxetic Sandwich Panels for Blastworthy Structures Using Machine Learning Method. Applied Sciences, 14(23), 10831. https://doi.org/10.3390/app142310831