The Optimization of Covert Communication in Asymmetric Jammer-Assist Systems
Abstract
:1. Introduction
2. System Model
2.1. Communication Scenario
2.2. Transmission Scheme
2.3. Hypothesis Test
2.4. Problem Formulation
3. Design of Amplitude Gain and Jammer Noise Distribution
4. Analysis of the Transmission Rate
4.1. Derivation of Mutual Information at Bob
4.2. Problem Reformulation for Two Cases
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WIFI | Wireless Fidelity |
OFDM | Orthogonal frequency-division multiplexing |
BPSK | Binary Phase Shift Keying |
AWGN | Additive White Gaussian Noise |
QPSK | Quadrature Phase Shift Keying |
References
- Wu, Z.; Liu, R.; Shuai, H.; Zhu, S.; Li, C. Covert performance for integrated satellite multiple terrestrial relay networks with partial relay selection. Sensors 2022, 22, 5524. [Google Scholar] [CrossRef]
- Moon, J. Performance Comparison of Relay-Based Covert Communications: DF, CF and AF. Sensors 2023, 23, 8747. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Habashna, A.; Wainer, G.; Bouali, F.; Boudreau, G.; Wali, K. Deep Reinforcement Learning-Based Resource Allocation for Secure RIS-aided UAV Communication. In Proceedings of the 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 10–13 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Iqbal, A.; Tham, M.L.; Wong, Y.J.; Al-Habashna, A.; Wainer, G.; Zhu, Y.X.; Dagiuklas, T. Empowering Non-Terrestrial Networks With Artificial Intelligence: A Survey. IEEE Access 2023, 11, 100986–101006. [Google Scholar] [CrossRef]
- Qiao, S.; Cao, D.; Zhang, Q.; Xu, Y.; Liu, G. Covert Communication Gains From Adversary’s Uncertainty of Phase Angles. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2899–2912. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D.; Guha, S. Hiding information in noise: Fundamental limits of covert wireless communication. IEEE Commun. Mag. 2015, 53, 26–31. [Google Scholar] [CrossRef]
- Hu, J.; Lin, C.; Li, X. Relationship Privacy Leakage in Network Traffics. In Proceedings of the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Limits of Reliable Communication with Low Probability of Detection on AWGN Channels. IEEE J. Sel. Areas Commun. 2013, 31, 1921–1930. [Google Scholar] [CrossRef]
- Chen, X.; An, J.; Xiong, Z.; Xing, C.; Zhao, N.; Yu, F.R.; Nallanathan, A. Covert Communications: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2023, 25, 1173–1198. [Google Scholar] [CrossRef]
- Çek, M.E.; Savaci, F. Stable non-Gaussian noise parameter modulation in digital communication. Electron. Lett. 2009, 45, 1256–1257. [Google Scholar] [CrossRef]
- Classen, J.; Schulz, M.; Hollick, M. Practical covert channels for WiFi systems. In Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 28–30 September 2015; pp. 209–217. [Google Scholar] [CrossRef]
- Grabski, S.; Szczypiorski, K. Steganography in OFDM Symbols of Fast IEEE 802.11n Networks. In Proceedings of the 2013 IEEE Security and Privacy Workshops, San Francisco, CA, USA, 23–24 May 2013; pp. 158–164. [Google Scholar] [CrossRef]
- D’Oro, S.; Restuccia, F.; Melodia, T. Hiding Data in Plain Sight: Undetectable Wireless Communications Through Pseudo-Noise Asymmetric Shift Keying. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1585–1593. [Google Scholar] [CrossRef]
- Sobers, T.V.; Bash, B.A.; Guha, S.; Towsley, D.; Goeckel, D. Covert communication in the presence of an uninformed jammer. IEEE Trans. Wirel. Commun. 2017, 16, 6193–6206. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Square root law for communication with low probability of detection on AWGN channels. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 448–452. [Google Scholar]
- Che, P.H.; Bakshi, M.; Jaggi, S. Reliable deniable communication: Hiding messages in noise. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 2945–2949. [Google Scholar]
- Bloch, M.R. Covert communication over noisy channels: A resolvability perspective. IEEE Trans. Inf. Theory 2016, 62, 2334–2354. [Google Scholar] [CrossRef]
- Wang, L.; Wornell, G.W.; Zheng, L. Fundamental limits of communication with low probability of detection. IEEE Trans. Inf. Theory 2016, 62, 3493–3503. [Google Scholar] [CrossRef]
- Bash, B.A.; Gheorghe, A.H.; Patel, M.; Habif, J.L.; Goeckel, D.; Towsley, D.; Guha, S. Quantum-secure covert communication on bosonic channels. Nat. Commun. 2015, 6, 8626. [Google Scholar] [CrossRef] [PubMed]
- Tahmasbi, M.; Bloch, M.R. First- and Second-Order Asymptotics in Covert Communication. IEEE Trans. Inf. Theory 2019, 65, 2190–2212. [Google Scholar] [CrossRef]
- Arumugam, K.S.K.; Bloch, M.R. Covert Communication Over a K-User Multiple-Access Channel. IEEE Trans. Inf. Theory 2019, 65, 7020–7044. [Google Scholar] [CrossRef]
- Kumar Arumugam, K.S.; Bloch, M.R. Embedding Covert Information in Broadcast Communications. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2787–2801. [Google Scholar] [CrossRef]
- Cho, K.H.; Lee, S.H. Treating Interference as Noise Is Optimal for Covert Communication Over Interference Channels. IEEE Trans. Inf. Forensics Secur. 2021, 16, 322–332. [Google Scholar] [CrossRef]
- Kibloff, D.; Perlaza, S.M.; Wang, L. Embedding Covert Information on a Given Broadcast Code. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 2169–2173. [Google Scholar] [CrossRef]
- Tan, V.Y.F.; Lee, S.H. Time-Division is Optimal for Covert Communication Over Some Broadcast Channels. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1377–1389. [Google Scholar] [CrossRef]
- Shahzad, K.; Zhou, X.; Yan, S.; Hu, J.; Shu, F.; Li, J. Achieving Covert Wireless Communications Using a Full-Duplex Receiver. IEEE Trans. Wirel. Commun. 2018, 17, 8517–8530. [Google Scholar] [CrossRef]
- Li, K.; Kelly, P.A.; Goeckel, D. Optimal power adaptation in covert communication with an uninformed jammer. IEEE Trans. Wirel. Commun. 2020, 19, 3463–3473. [Google Scholar] [CrossRef]
- Du, H.; Niyato, D.; Xie, Y.A.; Cheng, Y.; Kang, J.; Kim, D.I. Performance Analysis and Optimization for Jammer-Aided Multiantenna UAV Covert Communication. IEEE Trans. Wirel. Commun. 2022, 40, 2962–2979. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, S.; Yang, W.; Huang, Y.; Liu, C. Energy-Efficient Covert Communications for Bistatic Backscatter Systems. IEEE Trans. Veh. Commun. 2021, 70, 2906–2911. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Covert communication gains from adversary’s ignorance of transmission time. IEEE Trans. Wirel. Commun. 2016, 15, 8394–8405. [Google Scholar] [CrossRef]
- Chen, W.; Ding, H.; Wang, S.; Gong, F. On the limits of covert ambient backscatter communications. IEEE Wirel. Commun. Lett. 2021, 11, 308–312. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Koksal, C.E. Fundamental limits of covert communication over MIMO AWGN channel. In Proceedings of the 2017 IEEE Conference on Communications and Network Security (CNS), Las Vegas, NV, USA, 9–11 October 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Yan, S.; Cong, Y.; Hanly, S.V.; Zhou, X. Gaussian Signalling for Covert Communications. IEEE Trans. Wirel. Commun. 2019, 18, 3542–3553. [Google Scholar] [CrossRef]
- Wang, H.M.; Zhang, Y.; Zhang, X.; Li, Z. Secrecy and Covert Communications Against UAV Surveillance via Multi-Hop Networks. IEEE Trans. Commun. 2020, 68, 389–401. [Google Scholar] [CrossRef]
Scenario | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 3.5 | 2.5 | 0.46 | 0.38 | 0.3 | 3.8 | 2.2 | 0.22 | 0.56 |
2 | 5 | 4.5 | 3.5 | 0.45 | 0.44 | 0.3 | 3.5 | 2.0 | 0.41 | 0.52 |
3 | 5 | 5.5 | 1.5 | 0.15 | 0.13 | 0.3 | 2.8 | 4.2 | 0.15 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Zhu, R.; Ji, X.; Zhao, J.; Ding, H. The Optimization of Covert Communication in Asymmetric Jammer-Assist Systems. Appl. Sci. 2024, 14, 483. https://doi.org/10.3390/app14020483
Qiao S, Zhu R, Ji X, Zhao J, Ding H. The Optimization of Covert Communication in Asymmetric Jammer-Assist Systems. Applied Sciences. 2024; 14(2):483. https://doi.org/10.3390/app14020483
Chicago/Turabian StyleQiao, Sen, Ruizhi Zhu, Xiaopeng Ji, Junjie Zhao, and Huihui Ding. 2024. "The Optimization of Covert Communication in Asymmetric Jammer-Assist Systems" Applied Sciences 14, no. 2: 483. https://doi.org/10.3390/app14020483
APA StyleQiao, S., Zhu, R., Ji, X., Zhao, J., & Ding, H. (2024). The Optimization of Covert Communication in Asymmetric Jammer-Assist Systems. Applied Sciences, 14(2), 483. https://doi.org/10.3390/app14020483