Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Blackcurrant Pomace
2.2. Preparation of Solvents for Extraction
2.3. Conditions of Ultrasound-Assisted Extraction
2.4. Moisture, Water Activity, Protein Content and Color Determination of Pomace
2.5. Chromatographic Determination of Anthocyanins
2.5.1. Preparation of Primary Extract from Pomace
2.5.2. Chromatographic Parameters
2.6. Other Analyses Conducted on Extracts
2.6.1. Color Parameters
2.6.2. Determination of Coloring Strength
2.6.3. Analysis of pH
2.7. Statistics
3. Results and Discussion
3.1. Characteristics of Blackcurrant Pomace
3.2. Extraction Yield of Anthocyanins
3.3. Color Parameters and Coloring Strength of Anthocyanin Extracts
3.4. pH of Anthocyanin Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Factor | Degrees of Freedom | SS | MS | F | p-Value |
---|---|---|---|---|---|
Water–ethanol with HCl solvent | |||||
Temperature | 2 | 3275.0 | 1637.5 | 882.8 | <0.05 |
Time | 2 | 791.2 | 395.6 | 213.3 | <0.05 |
Temperature with Time | 4 | 652.1 | 163.0 | 87.9 | <0.05 |
Water–citric acid solvent | |||||
Temperature | 2 | 54.5 | 27.3 | 24.7 | <0.05 |
Time | 2 | 17.2 | 8.6 | 7.8 | <0.05 |
Temperature with Time | 4 | 19.4 | 4.8 | 4.4 | <0.05 |
Temperature (°C) | Time (min) | Homogeneous Groups | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
45 | 60 | x | ||||||
45 | 30 | x | x | |||||
45 | 15 | x | x | |||||
25 | 60 | x | x | |||||
25 | 30 | x | x | |||||
25 | 15 | x | ||||||
35 | 60 | x | ||||||
35 | 30 | x | ||||||
35 | 15 | x |
Temperature (°C) | Time (min) | Homogeneous Groups | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
35 | 15 | x | |||
35 | 30 | x | |||
35 | 60 | x | x | ||
25 | 60 | x | x | x | |
45 | 60 | x | x | x | |
25 | 15 | x | x | ||
25 | 30 | x | x | ||
45 | 15 | x | x | ||
45 | 30 | x |
References
- Jurevičiūte, I.; Keršiene, M.; Bašinskiene, L.; Leskauskaite, D.; Jasutiene, I. Characterization of Berry Pomace Powders as Dietary Fiber-Rich. Foods 2022, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace—A review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M.; Zappia, C. Tomato seed oil for edible use: Cold break, hot break, and harvest year effects. J. Food Process. Preserv. 2017, 41, e13309. [Google Scholar] [CrossRef]
- Fidriyanto, R.; Singh, B.P.; Manju, K.M.; Widyastuti, Y.; Goel, G. Multivariate analysis of structural and functional properties of fibres from apple pomace using different extraction methods. Food Prod. Process. Nutr. 2023, 5, 6. [Google Scholar] [CrossRef]
- Kidoń, M.; Marciszak, E.; Uğur, Ş.; Kuligowski, M.; Radziejewska-Kubzdela, E. Chokeberry Pomace Utilization for Improving Selected Quality Parameters of Green Tea Leaves or Hibiscus Flower Infusions. Appl. Sci. 2023, 13, 8186. [Google Scholar] [CrossRef]
- Mäkilä, L.; Laaksonen, O.; Ramos Diaz, J.M.; Vahvaselkä, M.; Myllymäki, O.; Lehtomäki, I.; Laakso, S.; Jahreis, G.; Jouppila, K.; Larmo, P.; et al. Exploiting blackcurrant juice press residue in extruded snacks. LWT 2014, 57, 618–627. [Google Scholar] [CrossRef]
- Magyar, M.; da Costa Sousa, L.; Jin, M.; Sarks, C.; Balan, V. Conversion of apple pomace waste to ethanol at industrial relevant conditions. Appl. Microbiol. Biotechnol. 2016, 100, 7349–7358. [Google Scholar] [CrossRef]
- Ampese, L.C.; Sganzerla, W.G.; Di Domenico Ziero, H.; Costa, J.M.; Martins, G.; Forster-Carneiro, T. Valorization of apple pomace for biogas production: A leading anaerobic biorefinery approach for a circular bioeconomy. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Ali, S.R.; Anwar, Z.; Irshad, M.; Mukhtar, S.; Warraich, N.T. Bio-synthesis of citric acid from single and co-culture-based fermentation technology using agro-wastes. J. Radiat. Res. Appl. Sci. 2016, 9, 57–62. [Google Scholar] [CrossRef]
- Maleki, H.; Barani, H. Extraction and antibacterial activity of Pulicaria gnaphalodes as a natural colorant: Characterization and application on wool fibers. Prog. Color Color. Coat. 2019, 12, 145–154. [Google Scholar]
- Cortez, R.E.; Gonzalez de Mejia, E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 2019, 84, 2387–2401. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.H.; Hellström, J.; Karhu, S.; Pihlava, J.M.; Veteläinen, M. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem. 2016, 204, 14–20. [Google Scholar] [CrossRef]
- Ejaz, A.; Waliat, S.; Afzaal, M.; Saeed, F.; Ahmad, A.; Din, A.; Ateeq, H.; Asghar, A.; Shah, Y.A.; Rafi, A.; et al. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants (Ribes nigrum L): A comprehensive review. Food Sci. Nutr. 2023, 11, 5799–5817. [Google Scholar] [CrossRef] [PubMed]
- Azman, E.M.; Charalampopoulos, D.; Chatzifragkou, A. Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (Ribes nigrum L.) skins. J. Food Sci. 2020, 85, 3745–3755. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- José Aliaño González, M.; Carrera, C.; Barbero, G.F.; Palma, M. A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 16021. [Google Scholar] [CrossRef]
- Moradi, H.; Ghavam, M.; Tavili, A. Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotechnol. Rep. 2020, 25, e00408. [Google Scholar] [CrossRef]
- Linares, G.; Rojas, M.L. Ultrasound-Assisted Extraction of Natural Pigments From Food Processing By-Products: A Review. Front. Nutr. 2022, 9, 891462. [Google Scholar] [CrossRef]
- Azman, E.M.; Nor, N.D.M.; Charalampopoulos, D.; Chatzifragkou, A. Effect of acidified water on phenolic profile and antioxidant activity of dried blackcurrant (Ribes nigrum L.) pomace extracts. LWT 2022, 154, 112733. [Google Scholar] [CrossRef]
- Da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 20190191. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fernandes, F.A.N.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crops Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Marina, M.L.; Plaza, M. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef] [PubMed]
- Basegmez, H.I.O.; Povilaitis, D.; Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Alasalvar, C.; Venskutonis, P.R. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J. Supercrit. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C.; Olaiz, N. Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food Bioprocess Technol. 2019, 12, 1102–1109. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International, 22nd ed.; Official Method 920.152 Protein in Fruit Products Kjeldahl Method; AOAC International: Rockville, MD, USA, 2023.
- Kruszewski, B.; Zawada, K.; Karpiński, P. Impact of High-Pressure Homogenization Parameters on Physicochemical Characteristics, Bioactive Compounds Content, and Antioxidant Capacity of Blackcurrant Juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef]
- Goiffon, J.P.; Mouly, P.P.; Gaydou, E.M. Anthocyanic pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. Anal. Chim. Acta 1999, 382, 39–50. [Google Scholar] [CrossRef]
- Reißner, A.M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar] [CrossRef]
- Sójka, M.; Król, B. Composition of industrial seedless black currant pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Ali Redha, A.; Anusha Siddiqui, S.; Zare, R.; Spadaccini, D.; Guazzotti, S.; Feng, X.; Bahmid, N.A.; Wu, Y.S.; Ozeer, F.Z.; Aluko, R.E. Blackcurrants: A Nutrient-Rich Source for the Development of Functional Foods for Improved Athletic Performance. Food Rev. Int. 2022. [Google Scholar] [CrossRef]
- Šimerdová, B.; Bobríková, M.; Lhotská, I.; Kaplan, J.; Křenová, A.; Šatínský, D. Evaluation of anthocyanin profiles in various blackcurrant cultivars over a three-year period using a fast hplc-dad method. Foods 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Priya, B.; Al-Dhabi, N.A.; Ponmurugan, K.; Moorthy, I.G.; Sivarajasekar, N. Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason. Sonochem. 2017, 35, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, B.; Sigurdson, G.T.; Lao, F.; González-Miret, M.L.; Heredia, F.J.; Giusti, M.M. Assessment of the color modulation and stability of naturally copigmented anthocyanin-grape colorants with different levels of purification. Food Res. Int. 2018, 106, 791–799. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Pina, F.; Oliveira, J.; De Freitas, V. Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 2015, 71, 3107–3114. [Google Scholar] [CrossRef]
Moisture content (%) | 57.3 ± 0.4 |
Water activity (aw) | 0.977 |
Protein content (% in f.w.) | 5.2 ± 0.3 |
L* | 42.26 ± 0.08 |
C* | 14.36 ± 0.28 |
h° | 5.49 ± 0.13 |
Total anthocyanin content (mg/100 g f.w.) | 853.2 ± 48.7 |
Content of individual anthocyanins (mg/100 g f.w.): | |
delphinidin-3-O-glucoside | 200.2 ± 10.5 |
delphinidin-3-O-rutinoside | 387.9 ± 23.3 |
cyanidin-3-O-glucoside | 59.4 ± 5.2 |
cyanidin-3-O-rutinoside | 205.7 ± 9.7 |
Material/Solvent Ratio | Time (min) | Temperature (°C) | Water–Ethanol with HCl Solvent | Water–Citric Acid Solvent | ||
---|---|---|---|---|---|---|
Average Values (mg/100 mL) | Extraction Yield (%) | Average Values (mg/100 mL) | Extraction Yield (%) | |||
1:20 * | 15 | 25 | 80.7 ± 3.6 b | 80 | 79.1 ± 1.4 b | 79 |
30 | 74.7 ± 3.5 a | 74 | 80.3 ± 0.4 b | 80 | ||
60 | 73.9 ± 1.4 a | 74 | 76.6 ± 1.2 a | 76 | ||
15 | 35 | 91.2 ± 2.3 c | 91 | 72.5 ± 2.3 a | 72 | |
30 | 91.0 ± 2.4 c | 91 | 75.0 ± 1.8 a | 75 | ||
60 | 93.0 ± 3.2 c | 93 | 76.2 ± 3.8 ab | 76 | ||
15 | 45 | 75.7 ± 1.0 a | 75 | 80.6 ± 0.3 b | 80 | |
30 | 77.5 ± 2.3 ab | 77 | 81.9 ± 1.5 b | 82 | ||
60 | 71.4 ± 1.2 a | 71 | 79.0 ± 1.2 b | 79 | ||
1:7 ** | 15 | 25 | 254 ± 7.1 b | 85 | 198 ± 1.5 b | 66 |
30 | 248 ± 3.5 ab | 83 | 196 ± 4.7 ab | 66 | ||
60 | 244 ± 5.4 ab | 82 | 190 ± 4.8 a | 64 | ||
15 | 35 | 277 ± 5.4 c | 93 | 189 ± 5.0 a | 63 | |
30 | 267 ± 4.6 c | 89 | 188 ± 6.6 a | 63 | ||
60 | 258 ± 7.9 b | 86 | 188 ± 2.1 a | 63 | ||
15 | 45 | 258 ± 6.6 b | 86 | 205 ± 3.4 b | 68 | |
30 | 230 ± 9.5 a | 77 | 195 ± 4.2 ab | 65 | ||
60 | 221 ± 3.0 a | 74 | 190 ± 6.1 a | 64 |
Material/Solvent Ratio | Time (min) | Temperature (°C) | Solvent | |
---|---|---|---|---|
Water–Ethanol with HCl | Water–Citric Acid | |||
1:20 | 15 | 25 | 1.6 ± 0.1 a | 1.7 ± 0.1 a |
30 | 1.6 ± 0.0 a | 1.7 ± 0.0 a | ||
60 | 1.5 ± 0.1 a | 1.7 ± 0.1 a | ||
15 | 35 | 1.5 ± 0.1 a | 1.7 ± 0.0 a | |
30 | 1.5 ± 0.0 a | 1.6 ± 0.1 a | ||
60 | 1.5 ± 0.1 a | 1.5 ± 0.1 a | ||
15 | 45 | 1.6 ± 0.1 a | 1.6 ± 0.1 a | |
30 | 1.6 ± 0.1 a | 1.5 ± 0.1 a | ||
60 | 1.6 ± 0.1 a | 1.6 ± 0.1 a | ||
1:7 | 15 | 25 | 2.2 ± 0.1 a | 1.8 ± 0.1 a |
30 | 2.3 ± 0.1 a | 1.9 ± 0.1 a | ||
60 | 2.3 ± 0.1 a | 1.9 ± 0.0 a | ||
15 | 35 | 2.3 ± 0.1 a | 1.8 ± 0.1 a | |
30 | 2.6 ± 0.1 b | 1.8 ± 0.2 a | ||
60 | 2.6 ± 0.1 b | 1.9 ± 0.1 a | ||
15 | 45 | 2.2 ± 0.1 a | 1.8 ± 0.1 a | |
30 | 2.5 ± 0.0 b | 1.8 ± 0.1 a | ||
60 | 2.5 ± 0.1 b | 1.8 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruszewski, B.; Boselli, E. Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters. Appl. Sci. 2024, 14, 821. https://doi.org/10.3390/app14020821
Kruszewski B, Boselli E. Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters. Applied Sciences. 2024; 14(2):821. https://doi.org/10.3390/app14020821
Chicago/Turabian StyleKruszewski, Bartosz, and Emanuele Boselli. 2024. "Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters" Applied Sciences 14, no. 2: 821. https://doi.org/10.3390/app14020821
APA StyleKruszewski, B., & Boselli, E. (2024). Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters. Applied Sciences, 14(2), 821. https://doi.org/10.3390/app14020821