Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Drying Procedure
2.3. Approximation of the Experimental Data
2.4. Analysis of the Quality of Products
2.4.1. Extraction of Phenolic Compounds
2.4.2. Analysis of Phenolic Compounds by HPLC
2.4.3. Analysis of Water Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.2. Aproximation of Experimental Data
3.3. Quality of Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayaraman, K.S.; Das Gupta, D.K. Das Drying of Fruits and Vegetables. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 1995; ISBN 978-0-429-28977-4. [Google Scholar]
- Salunkhe, D.K.; Desai, B.B. Postharvest Biotechnology of Fruits, 2 Volumes, 1st ed.; CRC Press: Boca Raton, FL, USA, 1984; ISBN 978-0-8493-6122-7. [Google Scholar]
- Schiffmann, R.F. Microwave and Dielectric Drying. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 1995; ISBN 978-0-429-28977-4. [Google Scholar]
- Kumar, C.; Karim, M.A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Izli, N.; Polat, A. Intermittent Microwave Drying of Apple Slices: Drying Kinetics, Modeling, Rehydration Ratio and Effective Moisture Diffusivity. J. Agric. Sci. 2020, 26, 32–41. [Google Scholar] [CrossRef]
- Mierzwa, D.; Pawłowski, A. Convective Drying of Potatoes Assisted by Microwave and Infrared Radiation-Process Kinetics and Quality Aspects. J. Food Nutr. Res. 2017, 56, 351–361. [Google Scholar]
- Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound—A Review. Trends Food Sci. Technol. 2016, 56, 126–141. [Google Scholar] [CrossRef]
- Cárcel, J.A.; García-Pérez, J.V.; Riera, E.; Rosselló, C.; Mulet, A. Drying Assisted by Power Ultrasound. In Modern Drying Technology; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 237–278. ISBN 978-3-527-63170-4. [Google Scholar]
- Gamboa-Santos, J.; Montilla, A.; Cárcel, J.A.; Villamiel, M.; García-Pérez, J.V. Air-Borne Ultrasound Application in the Convective Drying of Strawberry. J. Food Eng. 2014, 128, 132–139. [Google Scholar] [CrossRef]
- Szadzińska, J.; Łechtańska, J.; Kowalski, S.J.; Stasiak, M. The Effect of High Power Airborne Ultrasound and Microwaves on Convective Drying Effectiveness and Quality of Green Pepper. Ultrason. Sonochem. 2017, 34, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Cárcel, J.A.; García-Pérez, J.V.; Riera, E.; Mulet, A. Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Dry. Technol. 2007, 25, 185–193. [Google Scholar] [CrossRef]
- Schössler, K.; Thomas, T.; Knorr, D. Modification of Cell Structure and Mass Transfer in Potato Tissue by Contact Ultrasound. Food Res. Int. 2012, 49, 425–431. [Google Scholar] [CrossRef]
- Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots—Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018, 48, 249–258. [Google Scholar] [CrossRef]
- Kowalski, S.J.; Mierzwa, D.; Stasiak, M. Ultrasound-Assisted Convective Drying of Apples at Different Process Conditions. Dry. Technol. 2017, 35, 939–947. [Google Scholar] [CrossRef]
- Rodríguez, Ó.; Santacatalina, J.V.; Simal, S.; García-Pérez, J.V.; Femenia, A.; Rosselló, C. Influence of Power Ultrasound Application on Drying Kinetics of Apple and Its Antioxidant and Microstructural Properties. J. Food Eng. 2014, 129, 21–29. [Google Scholar] [CrossRef]
- Sabarez, H.T.; Gallego-Juárez, J.A.; Riera, E. Ultrasonic-Assisted Convective Drying of Apple Slices. Dry. Technol. 2012, 30, 989–997. [Google Scholar] [CrossRef]
- Fernandes, F.A.N.; Rodrigues, S.; Cárcel, J.A.; García-Pérez, J.V. Ultrasound-Assisted Air-Drying of Apple (Malus domestica). Food Bioprocess Technol. 2015, 8, 1503–1511. [Google Scholar] [CrossRef]
- Konopacka, D.; Cybulska, J.; Zdunek, A.; Dyki, B.; Machlańska, A.; Celejewska, K. The Combined Effect of Ultrasound and Enzymatic Treatment on the Nanostructure, Carotenoid Retention and Sensory Properties of Ready-to-Eat Carrot Chips. LWT-Food Sci. Technol. 2017, 85, 427–433. [Google Scholar] [CrossRef]
- Andrzejewski, A. Research and Optimization of the Process of Concentrating Water Solutions of Pectin Using Forced Osmosis (FO). Ph.D. Thesis, Poznan University of Technology, Poznań, Poland, 2023. [Google Scholar]
- ISO 1026:1982; Fruit and Vegetable Products—Determination of Dry Matter Content by Reduced Pressure Drying and Water Content by Azeotropic Distillation. ISO: Geneva, Switzerland, 2000.
- Szadzińska, J.; Mierzwa, D.; Musielak, G. Ultrasound-Assisted Convective Drying of White Mushrooms (Agaricus bisporus). Chem. Eng. Process. -Process Intensif. 2022, 172, 108803. [Google Scholar] [CrossRef]
- Ertekin, C.; Firat, M.Z. A Comprehensive Review of Thin-Layer Drying Models Used in Agricultural Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R.; Yang, R. Optimization of a New Mobile Phase to Know the Complex and Real Polyphenolic Composition: Towards a Total Phenolic Index Using High-Performance Liquid Chromatography. J. Chromatogr. A 2003, 1018, 29–40. [Google Scholar] [CrossRef]
- Santacatalina, J.V.; Soriano, J.R.; Cárcel, J.A.; Garcia-Perez, J.V. Influence of Air Velocity and Temperature on Ultrasonically Assisted Low Temperature Drying of Eggplant. Food Bioprod. Process. 2016, 100, 282–291. [Google Scholar] [CrossRef]
- Funebo, T.; Ohlsson, T. Microwave-Assisted Air Dehydration of Apple and Mushroom. J. Food Eng. 1998, 38, 353–367. [Google Scholar] [CrossRef]
- Kriaa, K.; Nassar, A.F. Study of Gala Apples (Malus pumila) Thin-Layer Microwave Drying: Drying Kinetics, Diffusivity, Structure and Color. Food Sci. Technol. 2020, 41, 483–493. [Google Scholar] [CrossRef]
- Dehghannya, J.; Aghazade-Khoie, E.; Khakbaz Heshmati, M.; Ghanbarzadeh, B. Influence of Ultrasound Intensification on the Continuous and Pulsed Microwave during Convective Drying of Apple. Int. J. Fruit Sci. 2020, 20, S1751–S1764. [Google Scholar] [CrossRef]
- Dehghannya, J.; Seyed-Tabatabaei, S.-R.; Khakbaz Heshmati, M.; Ghanbarzadeh, B. Influence of Three Stage Ultrasound—Intermittent Microwave—Hot Air Drying of Carrot on Physical Properties and Energy Consumption. Heat Mass Transf. 2021, 57, 1893–1907. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, L.; Li, Z. Microwave Drying Behavior, Energy Consumption, and Mathematical Modeling of Sewage Sludge in a Novel Pilot-Scale Microwave Drying System. Sci. Total Environ. 2021, 777, 146109. [Google Scholar] [CrossRef] [PubMed]
- Petković, M.; Miletić, N.; Kurćubić, V.; Lukyanov, A.; Đurović, I.; Filipović, V.; Mladenović, V. Energy Consumption and Dehydration Parameters of Microwave Drying of Carrot. Acta Agric. Serbica 2022, 27, 137–142. [Google Scholar] [CrossRef]
- Dadan, M.; Nowacka, M.; Wiktor, A.; Sobczynska, A.; Witrowa-Rajchert, D. 4—Ultrasound to Improve Drying Processes and Prevent Thermolabile Nutrients Degradation. In Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound; Barba, F.J., Cravotto, G., Chemat, F., Rodriguez, J.M.L., Munekata, P.E.S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 55–110. ISBN 978-0-12-818275-8. [Google Scholar]
- Dehghannya, J.; Kadkhodaei, S.; Heshmati, M.K.; Ghanbarzadeh, B. Ultrasound-Assisted Intensification of a Hybrid Intermittent Microwave—Hot Air Drying Process of Potato: Quality Aspects and Energy Consumption. Ultrasonics 2019, 96, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, A.; Mahfeli, M.; Zarein, M. Investigation of Microwave Power Effects on Drying Kinetics and Energy Efficiency of Banana Samples. Glob. J. Sci. Front. Res. 2015, 15, 41–46. [Google Scholar]
- Ozuna, C.; Gómez Álvarez-Arenas, T.; Riera, E.; Cárcel, J.A.; García-Pérez, J.V. Influence of Material Structure on Air-Borne Ultrasonic Application in Drying. Ultrason. Sonochem. 2014, 21, 1235–1243. [Google Scholar] [CrossRef]
- Ling, Y.; Li, Q.; Zheng, H.; Omran, M.; Gao, L.; Li, K.; Chen, G. Drying Kinetics and Microstructure Evolution of Nano-Zirconia under Microwave Pretreatment. Ceram. Int. 2021, 47, 22530–22539. [Google Scholar] [CrossRef]
- Schössler, K.; Jäger, H.; Knorr, D. Effect of Continuous and Intermittent Ultrasound on Drying Time and Effective Diffusivity during Convective Drying of Apple and Red Bell Pepper. J. Food Eng. 2012, 108, 103–110. [Google Scholar] [CrossRef]
- Tham, T.C.; Ng, M.X.; Ong, S.P.; Hii, C.L.; Law, C.L. Application of Microwave-Assisted Drying on Specific Energy Consumption, Effective Diffusion Coefficient and Topological Changes of Crumb Natural Rubber (Cis-1, 4-Polyisoprene). Chem. Eng. Process. Process Intensif. 2018, 128, 19–35. [Google Scholar] [CrossRef]
- Guyot, S.; Le Bourvellec, C.; Marnet, N.; Drilleau, J.F. Procyanidins Are the Most Abundant Polyphenols in Dessert Apples at Maturity. LWT-Food Sci. Technol. 2002, 35, 289–291. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of Polyphenols in Different Apple Varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef] [PubMed]
No | Symbol | Description |
---|---|---|
1 | CV | convective drying at Ta = 343 K, with air flow velocity va = 2 m/s |
2 | CVUS | convective drying as in schedule No. 1 assisted with ultrasound of power PUS = 200 W |
3 | CVMW1 | convective drying as in schedule No. 1 assisted with microwaves of power PMW = 100 W |
4 | CVMW2 | convective drying as in schedule No. 1 assisted with microwaves of power PMW = 250 W |
5 | CVMWUS | convective drying as in schedule No. 1 assisted with microwaves of power PMW = 100 W and ultrasound of power PUS = 200 W |
Name | Formula |
---|---|
Newton | (6) |
Page | (7) |
Henderson–Pabis | (8) |
Midilli–Kucuk | (9) |
No | Symbol | Newton | Page | Henderson–Pabis | Midilli–Kucuk | ||||
---|---|---|---|---|---|---|---|---|---|
red χ2 | adj R2 | red χ2 | adj R2 | red χ2 | adj R2 | red χ2 | adj R2 | ||
1 | CV | 3.01·10−3 | 0.9689 | 1.50·10−4 | 0.9984 | 1.51·10−3 | 0.9844 | 3.09·10−5 | 0.9997 |
2 | CVUS | 2.18·10−3 | 0.9775 | 2.81·10−4 | 0.9971 | 9.92·10−4 | 0.9898 | 4.26·10−5 | 0.9996 |
3 | CVMW1 | 4.48·10−3 | 0.9582 | 4.48·10−3 | 0.9582 | 1.92·10−3 | 0.9821 | 3.62·10−5 | 0.9997 |
4 | CVMW2 | 3.65·10−3 | 0.9679 | 3.76·10−4 | 0.9967 | 1.42·10−3 | 0.9876 | 6.82·10−6 | 0.9999 |
5 | CVMWUS | 3.84·10−3 | 0.9647 | 2.98·10−4 | 0.9973 | 1.53·10−3 | 0.9859 | 1.54·10−5 | 0.9999 |
Symbol | a | SE | b | SE | k (1/s) | SE | n | SE | Deff (m2/s) | SE |
---|---|---|---|---|---|---|---|---|---|---|
CV | 1.02 | 3.72·10−3 | −3.79·10−6 | 2.39·10−7 | 2.14·10−5 | 2.98·10−6 | 1.22 | 1.59·10−2 | 7.39·10−9 a | 2.10·10−10 |
CVUS | 1.05 | 4.83·10−3 | −3.26·10−6 | 1.88·10−7 | 6.86·10−5 | 9.16·10−6 | 1.12 | 1.54·10−2 | 9.06·10−9 a | 3.11·10−10 |
CVMW1 | 1.04 | 4.75·10−3 | −5.05·10−6 | 6.47·10−7 | 2.53·10−5 | 4.53·10−6 | 1.29 | 2.20·10−2 | 1.33·10−8 b | 6.26·10−10 |
CVMW2 | 1.07 | 2.40·10−3 | −9.04·10−6 | 5.28·10−7 | 1.16·10−4 | 8.41·10−6 | 1.19 | 9.58·10−3 | 2.26·10−8 c | 1.10·10−9 |
CVMWUS | 1.06 | 3.35·10−3 | −7.80·10−6 | 5.11·10−7 | 6.96·10−5 | 7.45·10−6 | 1.19 | 1.35·10−2 | 1.57·10−8 b | 3.95·10−10 |
No | Symbol | Flavan-3-ols | Dihydrochalcons | Phenolic Acid | |||
---|---|---|---|---|---|---|---|
Cat | Ecat | Proc | PhXg | Ph | Chl | ||
1 | CV | 67.3 a | 240.0 a | 499.0 a | 44.4 a | 58.6 a | 267.5 a |
2 | CVUS | 73.5 ab | 277.9 ab | 603.4 bc | 44.1 a | 58.2 a | 297.5 a–c |
3 | CVMW1 | 87.7 c | 303.90 b | 663.8 c | 47.4 a | 57.7 a | 325.5 c |
4 | CVMW2 | 83.1 bc | 276.6 ab | 690.5 c | 46.0 a | 55.6 a | 313.9 bc |
5 | CVMWUS | 71.6 ab | 248.2 a | 557.8 ab | 45.8 a | 53.0 a | 278.7 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musielak, G.; Mieszczakowska-Frąc, M.; Mierzwa, D. Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach. Appl. Sci. 2024, 14, 994. https://doi.org/10.3390/app14030994
Musielak G, Mieszczakowska-Frąc M, Mierzwa D. Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach. Applied Sciences. 2024; 14(3):994. https://doi.org/10.3390/app14030994
Chicago/Turabian StyleMusielak, Grzegorz, Monika Mieszczakowska-Frąc, and Dominik Mierzwa. 2024. "Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach" Applied Sciences 14, no. 3: 994. https://doi.org/10.3390/app14030994
APA StyleMusielak, G., Mieszczakowska-Frąc, M., & Mierzwa, D. (2024). Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach. Applied Sciences, 14(3), 994. https://doi.org/10.3390/app14030994