Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design
Abstract
:1. Introduction
2. Chaos Oscillators, Discrete Models and Chaotic Synchronization
2.1. RC Chaos Oscillators
2.2. Vilnius Chaos Oscillator
2.3. Pecora–Carroll Chaotic Synchronization
3. Study on Synchronization Noise Immunity
3.1. Analog-Discrete Synchronization
3.2. Discrete-Analog Synchronization
3.3. Results Analysis
4. Study on Synchronization and Desynchronization Time
4.1. Analog-Discrete and Discrete Simulation and Experimetnal Setup
4.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ericsson Mobility Report November 2023. Available online: https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2023 (accessed on 30 December 2023).
- Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT World: Present and Future Challenges. IEEE Internet Things J. 2018, 5, 2483–2495. [Google Scholar] [CrossRef]
- Ali, M.S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M.H. Applications of Blockchains in the Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1676–1717. [Google Scholar] [CrossRef]
- Omoniwa, B.; Hussain, R.; Javed, M.A.; Bouk, S.H.; Malik, S.A. Fog/Edge Computing-Based IoT (FECIoT): Architecture, Applications, and Research Issues. IEEE Internet Things J. 2019, 6, 4118–4149. [Google Scholar] [CrossRef]
- Mathematics|Free Full-Text|An Image Encryption Scheme Synchronizing Optimized Chaotic Systems Implemented on Raspberry Pis. Available online: https://www.mdpi.com/2227-7390/10/11/1907 (accessed on 30 December 2023).
- Canyelles-Pericas, P.; Binns, R.; Ghassemlooy, Z.; Busawon, K. Data encryption with chaotic Colpitts oscillators via power supply modulation. In Proceedings of the 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 20–22 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hsueh, J.-C.; Chen, V.H.-C. An ultra-low voltage chaos-based true random number generator for IoT applications. Microelectron. J. 2019, 87, 55–64. [Google Scholar] [CrossRef]
- Seyhan, K.; Akleylek, S. Classification of random number generator applications in IoT: A comprehensive taxonomy. J. Inf. Secur. Appl. 2022, 71, 103365. [Google Scholar] [CrossRef]
- Rubezic, V.; Ostojic, R. Synchronization of chaotic Colpitts oscillators with applications to binary communications. In Proceedings of the ICECS’99 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357), Pafos, Cyprus, 5–8 September 1999; Volume 1, pp. 153–156. [Google Scholar] [CrossRef]
- Harwood, L.T.; Warr, P.A.; Beach, M.A. Chaotic Oscillator-Based Binary Phase-Shift Keying. IEEE Trans. Circuits Syst. Regul. Pap. 2014, 61, 1578–1587. [Google Scholar] [CrossRef]
- Lee, K.; Kyeong, S.; Kim, J.; Kim, Y.; Park, H. The chaotic on-off keying with guard interval for ultra-wideband communication. In Proceedings of the IEEE VTS Asia Pacific Wireless Communications Symposium, Las Vegas, CA, USA, 19–21 April 2006. [Google Scholar]
- Wang, B.; Chen, H.; Xie, Z.; Ma, X.; Zhu, Z. Design of Permutation Index DCSK with Noise Reduction for Short-range IoT Communications. IEEE Access 2023, 11, 102332–102339. [Google Scholar] [CrossRef]
- Pappu, C.S.; Carroll, T.L.; Flores, B.C. Simultaneous Radar-Communication Systems Using Controlled Chaos-Based Frequency Modulated Waveforms. IEEE Access 2020, 8, 48361–48375. [Google Scholar] [CrossRef]
- Pappu, C.S.; Beal, A.N.; Flores, B.C. Chaos Based Frequency Modulation for Joint Monostatic and Bistatic Radar-Communication Systems. Remote Sens. 2021, 13, 4113. [Google Scholar] [CrossRef]
- Chua, L.O.; Wu, C.W.; Huang, A.; Zhong, G.-Q. A universal circuit for studying and generating chaos. II. Strange attractors. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1993, 40, 745–761. [Google Scholar] [CrossRef]
- Kennedy, M.P. Chaos in the Colpitts oscillator. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1994, 41, 771–774. [Google Scholar] [CrossRef]
- Tjukovs, S.; Surmacs, D.; Grizans, J.; Iheanacho, C.V.; Pikulins, D. Implementation of Buck DC-DC Converter as Built-In Chaos Generator for Secure IoT. Electronics 2024, 13, 20. [Google Scholar] [CrossRef]
- Fattakhov, R.; Loginov, S. Discrete-nonlinear Colpitts oscillator based communication security increasing of the OFDM systems. In Proceedings of the 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russian, 16–18 November 2021; pp. 253–256. [Google Scholar] [CrossRef]
- Pecora, L.M.; Carroll, T.L.; Johnson, G.A.; Mar, D.J.; Heagy, J.F. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 1997, 7, 520–543. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wang, F.; Han, Z.; Dong, J. Chaos Synchronization of a Class of Chaotic Systems via Linear State Error Feedback Control. In Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016), Hangzhou, China, 9–10 April 2016. [Google Scholar] [CrossRef]
- Wu, H.; Xu, B.L.; Fan, C.; Wu, X.Y. Chaos Synchronization Between Unified Chaotic System and Rossler System. Appl. Mech. Mater. 2013, 321–324, 2464–2470. [Google Scholar] [CrossRef]
- Moskalenko, O.I.; Koronovskii, A.A.; Hramov, A.E.; Boccaletti, S. Generalized synchronization in mutually coupled oscillators and complex networks. Phys. Rev. E 2012, 86, 036216. [Google Scholar] [CrossRef]
- Hramov, A.E.; Koronovskii, A.A. An approach to chaotic synchronization. Chaos 2004, 14, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Rybin, V.; Kolev, G.; Kopets, E.; Dautov, A.; Karimov, A.; Karimov, T. Optimal Synchronization Parameters for Variable Symmetry Discrete Models of Chaotic Systems. In Proceedings of the 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Karimov, T.; Butusov, D.; Andreev, V.; Karimov, A.; Tutueva, A. Accurate Synchronization of Digital and Analog Chaotic Systems by Parameters Re-Identification. Electronics 2018, 7, 123. [Google Scholar] [CrossRef]
- Butusov, D.N.; Karimov, T.I.; Lizunova, I.A.; Soldatkina, A.A.; Popova, E.N. Synchronization of analog and discrete Rössler chaotic systems. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 1–3 February 2017; pp. 265–270. [Google Scholar] [CrossRef]
- Rybin, V.; Babkin, I.; Kvitko, D.; Karimov, T.; Nardo, L.; Nepomuceno, E.; Butusov, D. Estimating Optimal Synchronization Parameters for Coherent Chaotic Communication Systems in Noisy Conditions. Chaos Theory Appl. 2023, 5, 141–152. [Google Scholar] [CrossRef]
- Moskalenko, O.I.; Koronovskii, A.A.; Hramov, A.E. Generalized synchronization of chaos for secure communication: Remarkable stability to noise. Phys. Lett. A 2010, 374, 2925–2931. [Google Scholar] [CrossRef]
- Tamaševičius, A.; Mykolaitis, G.; Pyragas, V.; Pyragas, K. A simple chaotic oscillator for educational purposes. Eur. J. Phys. 2004, 26, 61. [Google Scholar] [CrossRef]
- Namajunas, A.; Tamasevicius, A. Simple RC chaotic oscillator. Electron. Lett. 1996, 32, 945–946. [Google Scholar] [CrossRef]
- Rybin, V.; Tutueva, A.; Karimov, T.; Kolev, G.; Butusov, D.; Rodionova, E. Optimizing the Synchronization Parameters in Adaptive Models of Rössler system. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Babajans, R.; Cirjulina, D.; Grizans, J.; Aboltins, A.; Pikulins, D.; Zeltins, M.; Litvinenko, A. Impact of the Chaotic Synchronization’s Stability on the Performance of QCPSK Communication System. Electronics 2021, 10, 640. [Google Scholar] [CrossRef]
- Cirjulina, D.; Babajans, R.; Kolosovs, D.; Litvinenko, A. Experimental Study on Frequency Modulated Chaos Shift Keying Communication System. In Proceedings of the 2022 Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW 2022, Riga, Latvia, 5–7 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Capligins, F.; Litvinenko, A.; Kolosovs, D. FPGA Implementation and Study of Antipodal Chaos Shift Keying Communication System. In Proceedings of the 2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 7–8 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Atkinson, K.E. An Introduction to Numerical Analysis, 2nd ed.; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Arora, N. SPICE Diode and MOSFET Models and Their Parameters. In MOSFET Models for VLSI Circuit Simulation: Theory and Practice; Arora, N., Ed.; Computational Microelectronics; Springer: Vienna, Austria, 1993; pp. 536–562. [Google Scholar] [CrossRef]
- Babajans, R.; Cirjulina, D.; Kolosovs, D.; Litvinenko, A. Experimental Study on Analog and Discrete Chaos Oscillators Synchronization. In Proceedings of the 2023 Workshop on Microwave Theory and Technology in Wireless Communications (MTTW), Riga, Latvia, 5–7 October 2023; pp. 24–28. [Google Scholar] [CrossRef]
- DG419 Datasheet and Product Info|Analog Devices. Available online: https://www.analog.com/en/products/dg419.html#product-overview (accessed on 30 December 2023).
Chaos Oscillator | Model | Cut-Off Frequency of the Filter for Forming n1 (Noise for x) | Cut-Off Frequency of the Filter for Forming n2 (Noise for y) | Cut-Off Frequency of the Filter for Forming n3 (Noise for z) |
---|---|---|---|---|
Vilnius | Discrete | 0.25 | 0.40 | 0.69 |
LTspice | 0.40 | 0.40 | 0.76 | |
Hardware | 0.29 | 0.37 | 0.58 | |
RC | Discrete | 0.60 | 0.67 | 1.00 |
LTspice | 0.50 | 0.83 | 0.93 | |
Hardware | 0.60 | 0.67 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babajans, R.; Cirjulina, D.; Capligins, F.; Kolosovs, D.; Litvinenko, A. Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design. Appl. Sci. 2024, 14, 915. https://doi.org/10.3390/app14020915
Babajans R, Cirjulina D, Capligins F, Kolosovs D, Litvinenko A. Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design. Applied Sciences. 2024; 14(2):915. https://doi.org/10.3390/app14020915
Chicago/Turabian StyleBabajans, Ruslans, Darja Cirjulina, Filips Capligins, Deniss Kolosovs, and Anna Litvinenko. 2024. "Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design" Applied Sciences 14, no. 2: 915. https://doi.org/10.3390/app14020915
APA StyleBabajans, R., Cirjulina, D., Capligins, F., Kolosovs, D., & Litvinenko, A. (2024). Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design. Applied Sciences, 14(2), 915. https://doi.org/10.3390/app14020915