Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization
Abstract
:1. Introduction
- A transformer is used instead of CNN, and the self-attention mechanism of the transformer is used to extract complex spatial and spectral features of remote sensing images.
- The neat topology and structural re-parameterization are adopted to reduce model parameters and speed up model inferencing.
2. Related Work
2.1. Image Super-Resolution Reconstruction Based on Deep Learning
2.2. Network Lightweight
3. Methodology and Model
3.1. Edge-Oriented Convolutional Block
3.2. RepViT
3.3. Channel Attention Block
3.4. Pixel Shuffle
3.5. Structural Re-Parameterization
4. Experimental Preparation
4.1. Dataset
4.2. Evaluation Index
4.3. Parameter Setting and Experimental Environment
5. Results and Analysis
5.1. Progressive Training
5.2. Visual Effects Evaluation
5.3. Quantitative Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, T.; Wang, L.; Yin, D.; Sun, K.; Chen, Y.; Li, W.; Li, D. Deep learning for change detection in remote sensing: A review. Geo-Spat. Inf. Sci. 2023, 26, 262–288. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Jiang, P.; Wang, Z.; Sui, Q.; Zhang, F. GPRI2Net: A Deep-Neural-Network-Based Ground Penetrating Radar Data Inversion and Object Identification Framework for Consecutive and Long Survey Lines. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5106320. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, J.; Huang, X.; Hu, X.; Li, J.; Peng, M. Luojia-HSSR: A high spatial-spectral resolution remote sensing dataset for land-cover classification with a new 3D-HRNet. Geo-Spat. Inf. Sci. 2023, 26, 289–301. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, D. Survey and Analysis of Land Satellite Remote Sensing Applied in Highway Transportations Infrastructure and System Engineering. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 8–11 July 2008; pp. 479–482. [Google Scholar] [CrossRef]
- Bridgelall, R.; Rafert, J.B.; Tolliver, D. Hyperspectral applications in the global transportation infrastructure. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 739–743. [Google Scholar] [CrossRef]
- Yang, L.; Siddiqi, A.; Weck, O.L. Urban Roads Network Detection from High Resolution Remote Sensing. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7431–7434. [Google Scholar] [CrossRef]
- Zheng, S.; Dai, H.; Wang, G.; Miao, L.; Zhang, W. Application of Transportation Superiority in Beijing-Tianjin-Hebei Region Based on High-Resolution Satellite Remote Sensing Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6964–6967. [Google Scholar] [CrossRef]
- Gagliardi, V.; Tosti, F.; Ciampoli, L.B.; Battagliere, M.L.; Tapete, D.; D’Amico, F.; Threader, S.; Alani, A.M.; Benedetto, A. Spaceborne Remote Sensing for Transport Infrastructure Monitoring: A Case Study of the Rochester Bridge, UK. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4762–4765. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, X.; Shang, L.; Zhang, D.; Wang, D. A Multi-modal Graph Neural Network Approach to Traffic Risk Forecasting in Smart Urban Sensing. In Proceedings of the 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Como, Italy, 22–25 June 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Duan, Y.; He, J.; Lu, Y.; Yu, X. Analysis of the Factors Affecting Airborne Digital Sensor Image Quality. IEEE Access 2019, 7, 8018–8027. [Google Scholar] [CrossRef]
- Xu, H.; Sun, R.; Zhang, L.; Tang, Y.; Liu, S.; Wang, Z. Influence on Image Interpretation of Band to Band Registration Error in High Resolution Satellite Remote Sensing Imagery. In Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Shaw, G.A.; Burke, H.H.K. Spectral imaging for remote sensing. Lincoln Lab. J. 2003, 14, 3–28. [Google Scholar]
- Da Silva, E.; Woolliams, E.R.; Picot, N.; Poisson, J.-C.; Skourup, H.; Moholdt, G.; Fleury, S.; Behnia, S.; Favier, V.; Arnaud, L.; et al. Towards Operational Fiducial Reference Measurement (FRM) Data for the Calibration and Validation of the Sentinel-3 Surface Topography Mission over Inland Waters, Sea Ice, and Land Ice. Remote Sens. 2023, 15, 4826. [Google Scholar] [CrossRef]
- Prol, F.S.; Ferre, R.M.; Saleem, Z.; Valisuo, P.; Pinell, C.; Lohan, E.S.; Elsanhoury, M.; Elmusrati, M.; Islam, S.; Celikbilek, K.; et al. Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. IEEE Access 2022, 10, 83971–84002. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process 2006, 15, 2226–2238. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y.; Gao, X.; Tao, D.; Ning, B. A Multi-frame Image Super-resolution Method. Signal Process. 2010, 90, 405–414. [Google Scholar] [CrossRef]
- Zeng, K.; Lu, T.; Liang, X.; Liu, K.; Chen, H.; Zhang, Y. Face Super-Resolution Via Bilayer Contextual Representation. Signal Process. Image Commun. 2019, 75, 147–157. [Google Scholar] [CrossRef]
- Qiu, D.; Cheng, Y.; Wang, X. Gradual Back-Projection Residual Attention Network for Magnetic Resonance Image Super-Resolution. Comput. Methods Programs Biomed. 2021, 208, 106252. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, X.; Li, J.; Cao, J. An Improved Weighted Projection Onto Convex Sets Method for Seismic Data Interpolation and Denoising. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 228–235. [Google Scholar] [CrossRef]
- Jakhetiya, V.; Lin, W.; Jaiswal, S.P.; Guntuku, S.C.; Au, O.C. Maximum a Posterior and Perceptually Motivated Reconstruction Algorithm: A Generic Framework. IEEE Trans. Multimed. 2017, 19, 93–106. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar] [CrossRef]
- Dong, C.; Chen, C.; Tang, X. Accelerating the Super-resolution Convolutional Neural Network. In Proceedings of the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]
- Kim, J.; Junk, K.; Kyoung, M. Accurate Image Super-resolution Using very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef]
- Tai, Y.; Yang, J.; Liu, X. Image Super-Resolution via Deep Recursive Residual Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017; pp. 2790–2798. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic Single Image Super-resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017; pp. 4681–4690. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. Esrgan: Enhanced Super-resolution Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 63–69. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Honolulu, HI, USA, 21–26 June 2017; pp. 1132–1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-resolution. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar] [CrossRef]
- Khattab, M.M.; Zeki, A.M.; Alwan, A.A.; Bouallegue, B.; Matter, S.S.; Ahmed, A.M. A hybrid regularization-based multi-frame super-resolution using bayesian framework. Comput. Syst. Sci. Eng. 2023, 44, 35–54. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, H.; Zhang, L. Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 4034–4043. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Z.; Lu, T.; Liu, L.; Huang, X.; Wang, J.; Jiang, K.; Zeng, K. A lightweight distillation CNN-transformer architecture for remote sensing image super-resolution. Int. J. Digit. Earth 2023, 16, 3560–3579. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, Y. Remote sensing image database based on NOSQL database. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, R.; Gan, F.; Wang, W.; Ding, L.; Yan, B. Evaluation of Spatial-Temporal Variation of Vegetation Restoration in Dexing Copper Mine Area Using Remote Sensing Data. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2013–2016. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J. Ningxia Integrative Geological Information System Based on SQL Server 2008. Geomat. Spat. Inf. Technol. 2011, 34, 83–85. [Google Scholar]
- Li, C.; Yuan, X.; Zhang, J.; Du, P.; Mi, L.; Li, Z. Earthquake Damage Monitoring and Assessment Based on High-Resolution Remote Sensing Images-Take Lushan Earthquake as an Example. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Mixconv: Mixed depthwise convolutional kernels. arXiv 2019. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, G.; Wen, Y.; Hu, J.; Evangelidis, G.; Tulyakov, S.; Wang, Y.; Ren, J. Efficientformer: Vision transformers at mobilenet speed. Adv. Neural Inf. Process Syst. 2022, 35, 12934–12949. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; Liu, Z. Mobileformer: Bridging mobilenet and transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5270–5279. [Google Scholar] [CrossRef]
- Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021. [Google Scholar] [CrossRef]
- Mehta, S.; Rastegari, M. Separable self attention for mobile vision transformers. arXiv 2022. [Google Scholar] [CrossRef]
- Ashish, V.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process Syst. 2017, 30, 6000–6010. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020. [Google Scholar] [CrossRef]
- Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do vision transformers see like convolutional neural networks? Adv. Neural Inf. Process Syst. 2021, 34, 08810. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-trained image processing transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12294–12305. [Google Scholar] [CrossRef]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, QC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Li, W.; Lu, X.; Qian, S.; Lu, J. On efficient transformer and image pre-training for low-level vision. arXiv 2021. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zhou, J.; Qiao, Y.; Dong, C. Activating More Pixels in Image Super-Resolution Transformer. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 22367–22377. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar] [CrossRef]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 59–64. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Milosavljevic, M.; Chalfin, A.; O’Neil, L.; Gope, D.; Matas, R.; Chalfin, A.; Suda, N.; Meng, L.; Loh, D. Collapsible Linear Blocks for Super-Efficient Super Resolution. arXiv 2021. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Huang, X. Lightweight Image Super-Resolution Based on Re-Parameterization and Self-Calibrated Convolution. Comput. Intell. Neurosci. 2022, 2022, 8628402. [Google Scholar] [CrossRef]
- Pan, J.; Bulat, A.; Tan, F.; Zhu, X.; Dudziak, L.; Li, H.; Tzimiropoulos, G.; Martinez, B. Edgevits: Competing light-weight CNNS on mobile devices with vision transformers. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin, Germany, 2022; pp. 294–311. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Lin, Z.; Han, J.; Ding, G. RepViT: Revisiting Mobile CNN From ViT Perspective. arXiv 2023. [Google Scholar] [CrossRef]
- Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10809–10819. [Google Scholar] [CrossRef]
- Wang, Y.; Bashir, S.M.A.; Khan, M.; Ullah, Q.; Wang, R.; Song, Y.; Guo, Z.; Niu, Y. Remote Sensing Image Super-resolution and Object Detection: Benchmark and State of the Art. Expert Syst. Appl. 2022, 197, 116793. [Google Scholar] [CrossRef]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
Dataset Name | Extracted Patches | Size | Spatial Resolution (m) |
---|---|---|---|
ISPRS Potsdam | 1368 | 1000 × 1000 | 0.05 |
UC Merced Land-Use | 99 | 256 × 256 | 0.3048 |
NWPU-RESISC45 | 101 | 256 × 256 | 0.8 |
Draper Satellite Image Chronology | 11 | 1000 × 1000 | 0.2 |
Ship Images from | 180 | ~421 × 388.5 | 0.8 |
Total: 1759 | Avg: 856 × 853 |
Metric | ECBSR | EDSR | SwinSR | RCAN | SRRepViT | HAT |
---|---|---|---|---|---|---|
PSNR | 30.6891 | 30.9186 | 30.9453 | 30.9379 | 30.9528 | 31.1809 |
SSIM | 0.8291 | 0.8361 | 0.8377 | 0.8366 | 0.8429 | 0.8434 |
Metric | ECBSR | EDSR | SwinSR | RCAN | SRRepViT | HAT |
---|---|---|---|---|---|---|
params | 0.78 M | 1.52 M | 11.82 M | 15.59 M | 0.25 M | 40.26 M |
FLOPs | 36.32 G | 130.27 G | 0.77 T | 1.05 T | 17.39 G | 2.53 T |
Speed | 0.025 s | 0.083 s | 0.345 s | 0.223 s | 0.013 s | 1.443 s |
Metric | PSNR | SSIM | FLOPs | Params | Speed |
---|---|---|---|---|---|
ECBSR | 30.6891 | 0.8291 | 36.32 G | 0.78 M | 0.025 s |
+ViT | 30.8917 | 0.8382 | 17.56 G | 0.29 M | 0.015 s |
+ ViT + attention | 30.9176 | 0.8401 | 30.02 G | 0.49 M | 0.020 s |
+ ViT + attention + pixel shuffle | 30.9528 | 0.8429 | 31.44 G | 0.51 M | 0.021 s |
+ ViT + attention + pixel shuffle + re-parameterization | 30.9528 | 0.8429 | 17.39 G | 0.25 M | 0.013 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Liu, Y.; Chen, J. Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization. Appl. Sci. 2024, 14, 917. https://doi.org/10.3390/app14020917
Bian J, Liu Y, Chen J. Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization. Applied Sciences. 2024; 14(2):917. https://doi.org/10.3390/app14020917
Chicago/Turabian StyleBian, Jiaming, Ye Liu, and Jun Chen. 2024. "Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization" Applied Sciences 14, no. 2: 917. https://doi.org/10.3390/app14020917
APA StyleBian, J., Liu, Y., & Chen, J. (2024). Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization. Applied Sciences, 14(2), 917. https://doi.org/10.3390/app14020917