Knapsack Balancing via Multiobjectivization
Abstract
:1. Introduction and Motivation
“can reduce the number of local optima, create new search paths from local optima to global optima, attain more incomparability solutions, and/or improve solution diversity”.
- We introduce knapsack balancing as a new aspect of the knapsack problem.
- We demonstrate how to incorporate the aspect of knapsack balancing into the knapsack problem standard model.
- We provide a formal proof of the correctness of our approach.
- We demonstrate working of the enriched knapsack problem model on illustrative examples.
2. Related Works
3. Balancing Knapsacks by Objective Function
- . The optimal solution to KP:
- ,
- profits of items selected to :
- ,
- (further on, we round all numbers to the third decimal place).
- ,
- profits of items selected to :
- ,
- .
- . The optimal solution to KP:
- ,
- profits of items selected to :
- ,
- .
- The optimal solution to KP:
- ,
- profits of items selected to :
- ,
- .
4. The Bi-Objective Knapsack Problem with and Objective Functions
4.1. Multiobjective Optimization
4.2. The Bi-Objective - KP
5. Illustrative Examples
- Example problems
- Pareto front approximations
- Solver
- Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
j | |||||
---|---|---|---|---|---|
0 | – | – | 19,688.000 | 185.824 | 911.322 |
1 | 0.995 | 0.005 | 19,688.000 | 185.824 | 911.322 |
33 | 0.835 | 0.165 | 19,679.000 | 192.538 | 895.297 |
133 | 0.335 | 0.665 | 19,611.000 | 197.179 | 885.795 |
153 | 0.235 | 0.765 | 19,576.000 | 200.749 | 877.454 |
165 | 0.175 | 0.825 | 19,544.000 | 204.245 | 870.672 |
181 | 0.095 | 0.905 | 19,440.000 | 206.909 | 863.358 |
186 | 0.070 | 0.930 | 19,380.000 | 207.487 | 862.964 |
187 | 0.065 | 0.935 | 19,349.000 | 207.904 | 862.007 |
189 | 0.055 | 0.945 | 19,298.000 | 211.076 | 854.957 |
197 | 0.015 | 0.985 | 18,503.000 | 214.166 | 840.841 |
198 | 0.010 | 0.990 | 18,319.000 | 217.168 | 804.718 |
199 | 0.005 | 0.995 | 18,035.000 | 220.275 | 797.057 |
200 | – | – | 12,457.000 | 231.887 | 324.431 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 19,275.000 | 217.498 | 808.585 |
1 | 0.995 | 0.005 | 19,275.000 | 217.498 | 808.585 |
9 | 0.955 | 0.045 | 19,274.000 | 220.298 | 802.076 |
56 | 0.720 | 0.280 | 19,267.000 | 230.445 | 785.963 |
142 | 0.290 | 0.710 | 19,249.000 | 233.242 | 779.847 |
188 | 0.060 | 0.940 | 19,155.000 | 236.792 | 773.983 |
199 | 0.005 | 0.995 | 18,652.000 | 241.245 | 758.760 |
200 | – | – | 18,652.000 | 241.245 | 758.760 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 17,955.000 | 192.966 | 854.879 |
1 | 0.995 | 0.005 | 17,955.000 | 192.966 | 854.879 |
32 | 0.840 | 0.160 | 17,945.000 | 195.628 | 847.210 |
41 | 0.795 | 0.205 | 17,942.000 | 196.714 | 846.224 |
73 | 0.635 | 0.365 | 17,927.000 | 199.264 | 838.769 |
106 | 0.470 | 0.530 | 17,903.000 | 201.056 | 837.178 |
120 | 0.400 | 0.600 | 17,888.000 | 203.606 | 829.870 |
130 | 0.350 | 0.650 | 17,876.000 | 205.891 | 824.438 |
142 | 0.290 | 0.710 | 17,858.000 | 206.750 | 823.668 |
155 | 0.225 | 0.775 | 17,819.000 | 211.088 | 814.514 |
170 | 0.150 | 0.850 | 17,756.000 | 211.247 | 814.920 |
173 | 0.135 | 0.865 | 17,732.000 | 213.909 | 808.021 |
184 | 0.080 | 0.920 | 17,600.000 | 228.255 | 591.583 |
191 | 0.045 | 0.955 | 17,574.000 | 230.579 | 588.271 |
193 | 0.035 | 0.965 | 17,557.000 | 234.877 | 583.480 |
195 | 0.025 | 0.975 | 17,517.000 | 242.248 | 575.717 |
200 | – | – | 16,137.000 | 246.343 | 511.088 |
References
- Kellerer, H.; Pferschy, U.; Pisinger, D. Knapsack Problems; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Assi, M.; Haraty, R. A survey of the knapsack problem. In Proceedings of the 2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon, 28–30 November 2018; pp. 1–6. [Google Scholar]
- Camargo, V.; Mattiolli, L.; Toledo, F. A knapsack problem as a tool to solve the production planning problem in small foundries. Comput. Oper. Res. 2012, 39, 86–92. [Google Scholar] [CrossRef]
- Mavrotas, G.; Diakoulaki, D.; Kourentzis, A. Selection among ranked projects under segmentation, policy and logical constraints. Eur. J. Oper. Res. 2008, 187, 177–192. [Google Scholar] [CrossRef]
- Olivier, P.; Lodi, A.; Pesant, G. The quadratic multiknapsack problem with conflicts and balance constraints. INFORMS J. Comput. 2021, 33, 949–962. [Google Scholar] [CrossRef]
- Nash, J. Two-person cooperative games. Econometrica 1953, 21, 128–140. [Google Scholar] [CrossRef]
- Knowles, J.; Watson, R.; Corne, D. Reducing local optima in single-objective problems by multi-objectivization. In Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2001; pp. 269–283. [Google Scholar]
- Ma, X.; Huang, Z.; Li, X.; Qi, Y.; Wang, L.; Zhu, Z. Multiobjectivization of single-objective optimization in evolutionary computation: A survey. IEEE Trans. Cybern. 2023, 53, 3702–3715. [Google Scholar] [CrossRef]
- Klamroth, K.; Tind, J. Constrained optimization using multiple objective programming. J. Glob. Optim. 2007, 37, 325–355. [Google Scholar] [CrossRef]
- Bednarczuk, E.; Miroforidis, J.; Pyzel, P. A multi-criteria approach to approximate solution of multiple-choice knapsack problem. Comput. Optim. Appl. 2018, 70, 889–910. [Google Scholar] [CrossRef]
- Bednarczuk, E.; Kaliszewski, I.; Miroforidis, J. Approximate solutions to the multiple-choice knapsack problem by multiobjectivization and Chebyshev scalarization. Oper. Res. Decis. 2024; in press. [Google Scholar]
- Cacchiani, V.; Iori, M.; Locatelli, A.; Martello, S. Knapsack problems—An overview of recent advances. Part I: Single knapsack problems. Comput. Oper. Res. 2022, 143, 105692. [Google Scholar] [CrossRef]
- Cacchiani, V.; Iori, M.; Locatelli, A.; Martello, S. Knapsack problems—An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res. 2022, 143, 105693. [Google Scholar] [CrossRef]
- D’Ambrosio, C.; Furini, F.; Monaci, M.; Traversi, E. On the product knapsack problem. Optim. Lett. 2018, 12, 691–712. [Google Scholar] [CrossRef]
- Halman, N.; Kovalyov, M.; Quilliot, A.; Shabtay, D.; Zofi, M. Bi-criteria path problem with minimum length and maximum survival probability. OR Spectr. 2019, 41, 469–489. [Google Scholar] [CrossRef]
- Pferschy, U.; Schauer, J.; Thielen, C. Approximating the product knapsack problem. Optim. Lett. 2021, 15, 2529–2540. [Google Scholar] [CrossRef]
- Boeckmann, J.; Thielen, C.; Pferschy, U. Approximating single- and multi-objective nonlinear sum and product knapsack problems. Discret. Optim. 2023, 48, 100771. [Google Scholar] [CrossRef]
- Simonson, I. Choice based on reasons: The case of attraction and compromise effects. J. Consum. Res. 1989, 16, 158–174. [Google Scholar] [CrossRef]
- Simonson, I.; Tversky, A. Choice in context: Tradeoff contrast and extremeness aversion. J. Mark. Res. 1992, 29, 281–295. [Google Scholar] [CrossRef]
- Chernev, A. Context effects without a context: Attribute balance as a reason for choice. J. Consum. Res. 2004, 32, 213–223. [Google Scholar] [CrossRef]
- Chernev, A. Extremeness aversion and attribute-balance effects in choice. J. Consum. Res. 2004, 31, 249–263. [Google Scholar] [CrossRef]
- Jacques, I. Mathematics for Economics and Business, 9th ed.; Pearson Education: Harlow, UK, 2018. [Google Scholar]
- Ehrgott, M. Multicriteria Optimization; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kaliszewski, I. Soft Computing for Complex Multiple Criteria Decision Making; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kaliszewski, I.; Miroforidis, J.; Podkopaev, D. Multiple Criteria Decision Making by Multiobjective Optimization—A Toolbox; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Miettinen, K.M. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: New York, NY, USA, 1999. [Google Scholar]
- GUROBI. 2024. Available online: https://www.gurobi.com/solutions/gurobi-optimizer/ (accessed on 31 September 2024).
- Helfrich, S.; Perini, T.; Halffmann, P.; Halffmann, P.; Bol, N.; Ruzika, S. Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems. J. Glob. Optim. 2023, 86, 417–440. [Google Scholar] [CrossRef]
- Kabadurmus, O.; Tasgetiren, M.F.; Oztop, H.; Erdogan, M.S. Solving 0-1 bi-objective multi-dimensional knapsack problems using binary genetic algorithm. Heuristics Optim. Learn. Stud. Comput. Intell. 2021, 906, 51–67. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Zuo, M.; Gong, D.; Wang, Y.; Ye, X.; Zeng, B.; Meng, F. Process knowledge-guided autonomous evolutionary optimization for constrained multiobjective problems. IEEE Trans. Evol. Comput. 2023, 28, 193–207. [Google Scholar] [CrossRef]
100 | 220 | 90 | 400 | 300 | 400 | 205 | 120 | 160 | 580 | |
8 | 24 | 13 | 80 | 70 | 80 | 45 | 15 | 28 | 90 | |
400 | 140 | 100 | 1300 | 650 | 320 | 480 | 80 | 60 | 2550 | |
130 | 32 | 20 | 120 | 40 | 30 | 20 | 6 | 3 | 180 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 17,038.000 | 185.209 | 859.335 |
1 | 0.995 | 0.005 | 17,038.000 | 185.209 | 859.335 |
47 | 0.765 | 0.235 | 17,021.000 | 205.085 | 816.100 |
180 | 0.100 | 0.900 | 16,731.000 | 207.331 | 809.829 |
184 | 0.080 | 0.920 | 16,660.000 | 208.565 | 806.430 |
187 | 0.065 | 0.935 | 16,609.000 | 212.045 | 799.082 |
192 | 0.040 | 0.960 | 16,430.000 | 212.977 | 607.430 |
193 | 0.035 | 0.965 | 16,348.000 | 222.843 | 585.288 |
196 | 0.020 | 0.980 | 16,262.000 | 225.963 | 581.562 |
197 | 0.015 | 0.985 | 16,257.000 | 226.393 | 581.394 |
198 | 0.010 | 0.990 | 16,049.000 | 230.010 | 574.887 |
199 | 0.005 | 0.995 | 15,892.000 | 237.173 | 519.866 |
200 | – | – | 15,841.000 | 240.652 | 516.462 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 17,675.000 | 215.930 | 798.377 |
1 | 0.995 | 0.005 | 17,675.000 | 215.930 | 798.377 |
177 | 0.115 | 0.885 | 17,502.000 | 218.669 | 792.286 |
183 | 0.085 | 0.915 | 17,459.000 | 219.873 | 789.987 |
186 | 0.070 | 0.930 | 17,425.000 | 223.403 | 783.121 |
198 | 0.010 | 0.990 | 16,615.000 | 228.355 | 745.153 |
199 | 0.005 | 0.995 | 15,885.000 | 229.126 | 575.893 |
200 | – | – | 15,012.000 | 239.317 | 503.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliszewski, I.; Miroforidis, J. Knapsack Balancing via Multiobjectivization. Appl. Sci. 2024, 14, 9236. https://doi.org/10.3390/app14209236
Kaliszewski I, Miroforidis J. Knapsack Balancing via Multiobjectivization. Applied Sciences. 2024; 14(20):9236. https://doi.org/10.3390/app14209236
Chicago/Turabian StyleKaliszewski, Ignacy, and Janusz Miroforidis. 2024. "Knapsack Balancing via Multiobjectivization" Applied Sciences 14, no. 20: 9236. https://doi.org/10.3390/app14209236
APA StyleKaliszewski, I., & Miroforidis, J. (2024). Knapsack Balancing via Multiobjectivization. Applied Sciences, 14(20), 9236. https://doi.org/10.3390/app14209236