Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI
Abstract
:1. Introduction
2. Artificial Intelligence
- -
- Supervised Learning: In this approach, the training data are labeled with a target, representing the “expected result”. After the training phase, the system can use the learned information to address problems that involve similar foundational knowledge.
- -
- Unsupervised Learning: This method operates on an unlabeled training set, focusing on discovering patterns and relationships within the data without any prior knowledge about its structure or categories.
- -
- Reinforcement Learning: Unlike the other methods, reinforcement learning also uses an unlabeled training set but provides feedback in the form of positive or negative results. This feedback creates a loop that allows the algorithm to assess whether its proposed solutions effectively resolve a problem, resembling the human learning process through “trial and error”.
2.1. AI Algorithms: Introduction to Unsupervised Learning
2.2. Unsupervised Learning: Clustering
2.2.1. K-Means Clustering
2.2.2. Hierarchical Clustering
- -
- Step 1. Calculate pairwise distances between all clusters: Let represent the dataset with n data points, where each is in its cluster . The distance between two clusters d(,) can be defined using different linkage methods.
- -
- Step 2. Merge the Closest Clusters: find the two clusters , with the smallest distance d(,) and merge them into a new cluster: .
- -
- Step 3. Update the Distance Matrix: after merging, update the distance matrix to reflect the new distances between the merged cluster and all remaining clusters.
2.3. Unsupervised Learning: Dimensionality Reduction
2.3.1. Principal Component Analysis
- -
- Step 1: center the dataset by subtracting the mean from each feature.
- -
- Step 2: calculate the covariance matrix Σ of the centered data :
- -
- Step 3: compute the eigenvalues λ and eigenvectors v the covariance matrix:
- -
- Step 4: select the top k eigenvectors corresponding to the largest eigenvalues and project the data onto these eigenvectors to obtain the reduced-dimensional representation :
2.3.2. t-Distributed Stochastic Neighbor Embedding
2.3.3. Autoencoders
2.4. Unsupervised Learning: Anomaly Detection
One-Class Support Vector Machine
3. Precision Medicine: Origin and History
3.1. Precision Medicine: The Modern Birth
3.2. Traditional Medicine vs. Precision Medicine
4. Ethical Considerations in AI-Driven PM
5. Unsupervised Learning Application in Precision Medicine
5.1. Clustering Application in PM
5.2. Dimensionality Reduction Application in PM
5.3. Anomaly Detection Application in PM
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Elsevier. Attitudes to AI: A Global Survey of AI Use and Trust in Healthcare; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Babbage, C. On the Application of Machinery to the Computation of Astronomical and Mathematical Tables; Taylor: London, UK, 1824. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Hoboken, NJ, USA, 2021; ISBN 978-0134610993. [Google Scholar]
- Bengio, Y.; Courville, A.; Goodfellow, I. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Cunningham, P.; Cord, M.; Delany, S.J. Supervised Learning. In Machine Learning Techniques for Multimedia; Cord, M., Cunningham, P., Eds.; Cognitive Technologies: Austin, TX, USA; Springer: Berlin/Heidelberg, Germany, 2008; pp. 21–49. [Google Scholar]
- Valkenborg, D.; Rousseau, A.-J.; Geubbelmans, M.; Burzykowski, T. Unsupervised learning. Am. J. Orthod. Dentofac. Orthop. 2023, 163, 877–882. [Google Scholar] [CrossRef]
- Eckhardt, C.M.; Madjarova, S.J.; Williams, R.J.; Ollivier, M.; Karlsson, J.; Pareek, A.; Nwachukwu, B.U. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 376–381. [Google Scholar] [CrossRef]
- Saxena, A.K.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [Google Scholar] [CrossRef]
- Karim, M.R.; Beyan, O.; Zappa, A.; Costa, I.G.; Rebholz-Schuhmann, D.; Cochez, M.; Decker, S. Deep learning-based clustering approaches for bioinformatics. Brief. Bioinform. 2021, 22, 393–415. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Khan, S.; Harouni, M.; Abbasi, R.; Iqbal, S.; Mehmood, Z. Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification. Microsc. Res. Tech. 2021, 84, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Sun, M.; Lian, J.; Hou, S. Feature dimensionality reduction: A review. Complex Intell. Syst. 2022, 8, 2663–2693. [Google Scholar] [CrossRef]
- Nassif, A.B.; Talib, M.A.; Nasir, Q.; Dakalbab, F.M. Machine Learning for Anomaly Detection: A Systematic Review. IEEE Access 2021, 9, 78658–78700. [Google Scholar] [CrossRef]
- Kascenas, A.; Pugeault, N.; O’Neil, A.Q. Denoising Autoencoders for Unsupervised Anomaly Detection in Brain MRI. In Proceedings of the International Conference on Medical Imaging with Deep Learning, Zurich, Switzerland, 6–8 July 2022. [Google Scholar]
- Montavon, G.; Kauffmann, J.; Samek, W.; Müller, K.R. Explaining the Predictions of Unsupervised Learning Models. In xxAI—Beyond Explainable AI; Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.R., Samek, W., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13200, pp. 159–177. [Google Scholar]
- Selim, S.Z.; Ismail, M.A. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 81–87. [Google Scholar] [CrossRef]
- Maji, A.; Velaga, N.R.; Urie, Y. Hierarchical clustering analysis framework of mutually exclusive crash causation parameters for regional road safety strategies. Int. J. Inj. Control Saf. Promot. 2018, 25, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar]
- Alam, S.; Sonbhadra, S.; Agarwal, S.; Nagabhushan, P. One-class support vector classifiers: A survey. Knowl.-Based Syst. 2020, 196, 105754. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Zhang, P.; Wang, S.; Liu, X.; Zhu, E. Improved autoencoder for unsupervised anomaly detection. Int. J. Intell. Syst. 2021, 36, 7103–7125. [Google Scholar] [CrossRef]
- Muharremi, G.; Meçani, R.; Muka, T. The Buzz Surrounding Precision Medicine: The Imperative of Incorporating It into Evidence-Based Medical Practice. J. Pers. Med. 2023, 14, 53. [Google Scholar] [CrossRef]
- Cecchin, E.; Stocco, G. Pharmacogenomics and Personalized Medicine. Genes 2020, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Visibelli, A.; Cicaloni, V.; Spiga, O.; Santucci, A. Computational Approaches Integrated in a Digital Ecosystem Platform for a Rare Disease. Front. Mol. Med. 2022, 2, 827340. [Google Scholar] [CrossRef]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef]
- Visibelli, A.; Roncaglia, B.; Spiga, O.; Santucci, A. The Impact of Artificial Intelligence in the Odyssey of Rare Diseases. Biomedicines 2023, 11, 887. [Google Scholar] [CrossRef]
- Moeini, R.; Memariani, Z.; Pasalar, P.; Gorji, N. Historical Root of Precision Medicine: An Ancient Concept Concordant with the Modern Pharmacotherapy. Daru 2017, 25, 7. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Health and Consumers, Unit D3 eHealth and Health Technology Assessment. In The Use of Big Data in Public Health Policy and Research; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Maier, M. Personalized Medicine-A Tradition in General Practice! Eur. J. Gen. Pract. 2019, 25, 63–64. [Google Scholar] [CrossRef]
- Naithani, N.; Sinha, S.; Misra, P.; Vasudevan, B.; Sahu, R. Precision Medicine: Concept and Tools. Med. J. Armed Forces India 2021, 77, 249–257. [Google Scholar] [CrossRef]
- König, I.R.; Fuchs, O.; Hansen, G.; von Mutius, E.; Kopp, M.V. What Is Precision Medicine? Eur. Respir. J. 2017, 50, 1700391. [Google Scholar] [CrossRef]
- Carrasco-Ramiro, F.; Peiró-Pastor, R.; Aguado, B. Human Genomics Projects and Precision Medicine. Gene Ther. 2017, 24, 551–561. [Google Scholar] [CrossRef]
- Duan, X.P.; Qin, B.D.; Jiao, X.D.; Liu, K.; Wang, Z.; Zang, Y.-S. New Clinical Trial Design in Precision Medicine: Discovery, Development and Direction. Sig. Transduct. Target. Ther. 2024, 9, 57. [Google Scholar] [CrossRef]
- Fokunang, C.N.; Ndikum, V.; Tabi, O.Y.; Jiofack, R.B.; Ngameni, B.; Guedje, N.M.; Tembe-Fokunang, E.A.; Tomkins, P.; Barkwan, S.; Kechia, F.; et al. Traditional Medicine: Past, Present and Future Research and Development Prospects and Integration in the National Health System of Cameroon. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 284–295. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, J.Q.; Shen, X.J.; Zhang, Y.; Guo, D.A. Overview and Limitations of Database in Global Traditional Medicines: A Narrative Review. Acta Pharmacol. Sin. 2024. [Google Scholar] [CrossRef]
- Mathur, S.; Sutton, J. Personalized Medicine Could Transform Healthcare. Biomed Rep. 2017, 7, 3–5. [Google Scholar] [CrossRef]
- Baccarelli, A.; Dolinoy, D.C.; Walker, C.L. A Precision Environmental Health Approach to Prevention of Human Disease. Nat. Commun. 2023, 14, 2449. [Google Scholar] [CrossRef]
- Velmovitsky, P.E.; Bevilacqua, T.; Alencar, P.; Cowan, D.; Morita, P.P. Convergence of Precision Medicine and Public Health into Precision Public Health: Toward a Big Data Perspective. Front. Public Health 2021, 9, 561873. [Google Scholar] [CrossRef]
- Hasanzad, M.; Sarhangi, N.; Ehsani Chimeh, S.; Ayati, N.; Afzali, M.; Khatami, F.; Nikfar, S.; Meybodi, H.R.A. Precision Medicine Journey through Omics Approach. J. Diabetes Metab. Disord. 2021, 21, 881–888. [Google Scholar] [CrossRef]
- Tebani, A.; Afonso, C.; Marret, S.; Bekri, S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int. J. Mol. Sci. 2016, 17, 1555. [Google Scholar] [CrossRef]
- Antonatos, C.; Asmenoudi, P.; Panoutsopoulou, M.; Vasilopoulos, Y. Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine. Int. J. Mol. Sci. 2023, 24, 7090. [Google Scholar] [CrossRef]
- Liu, Y.; Song, F.; Li, Z.; Chen, L.; Xu, Y.; Sun, H.; Chang, Y. A Comprehensive Tool for Tumor Precision Medicine with Pharmaco-Omics Data Analysis. Front. Pharmacol. 2023, 14, 1085765. [Google Scholar] [CrossRef]
- Sneha, P.; Doss, C.G.P. Molecular Dynamics: New Frontier in Personalized Medicine. Adv. Protein Chem. Struct. Biol. 2016, 102, 181–224. [Google Scholar]
- Trezza, A.; Spiga, O.; Mugnai, P.; Saponara, S.; Sgaragli, G.; Fusi, F. Functional, Electrophysiology, and Molecular Dynamics Analysis of Quercetin-Induced Contraction of Rat Vascular Musculature. Eur. J. Pharmacol. 2022, 918, 174778. [Google Scholar] [CrossRef]
- Hulsen, T.; Jamuar, S.S.; Moody, A.R.; Karnes, J.H.; Varga, O.; Hedensted, S.; Spreafico, R.; Hafler, D.A.; McKinney, E.F. From Big Data to Precision Medicine. Front. Med. 2019, 6, 34. [Google Scholar] [CrossRef]
- Prosperi, M.; Min, J.S.; Bian, J.; Modave, F. Big Data Hurdles in Precision Medicine and Precision Public Health. BMC Med. Inform. Decis. Mak. 2018, 18, 139. [Google Scholar] [CrossRef]
- Visibelli, A.; Peruzzi, L.; Poli, P.; Scocca, A.; Carnevale, S.; Spiga, O.; Santucci, A. Supporting Machine Learning Model in the Treatment of Chronic Pain. Biomedicines 2023, 11, 1776. [Google Scholar] [CrossRef]
- Frusciante, L.; Visibelli, A.; Geminiani, M.; Santucci, A.; Spiga, O. Artificial Intelligence Approaches in Drug Discovery: Towards the Laboratory of the Future. Curr. Top. Med. Chem. 2022, 22, 2176–2189. [Google Scholar] [CrossRef]
- Schork, N.J. Artificial Intelligence and Personalized Medicine. Cancer Treat. Res. 2019, 178, 265–283. [Google Scholar]
- Farhud, D.D.; Zokaei, S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran. J. Public Health 2021, 50, i–v. [Google Scholar] [CrossRef]
- Yadav, N.; Pandey, S.; Gupta, A.; Dudani, P.; Gupta, S.; Rangarajan, K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. Indian Dermatol. Online J. 2023, 14, 788–792. [Google Scholar] [CrossRef]
- McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from Decentralized Data. PMLR 2016, 54, 1273–1282. [Google Scholar]
- Teo, Z.L.; Jin, L.; Li, S.; Miao, D.; Zhang, X.; Ng, W.Y.; Tan, T.F.; Lee, D.M.; Chua, K.J.; Heng, J.; et al. Federated Machine Learning in Healthcare: A Systematic Review on Clinical Applications and Technical Architecture. Cell Rep. Med. 2024, 5, 101419. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing Bias in Big Data and AI for Health Care: A Call for Open Science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef]
- Liu, M.; Ning, Y.; Ke, Y.; Shang, Y.; Chakraborty, B.; Ong, M.E.H.; Vaughan, R.; Liu, N. FAIM: Fairness-Aware Interpretable Modeling for Trustworthy Machine Learning in Healthcare. Patterns 2024. [Google Scholar] [CrossRef]
- Jones, C.; Thornton, J.; Wyatt, J.C. Artificial Intelligence and Clinical Decision Support: Clinicians’ Perspectives on Trust, Trustworthiness, and Liability. Med. Law Rev. 2023, 31, 501–520. [Google Scholar] [CrossRef]
- Robinson, G.A.; Peng, J.; Dönnes, P.; Coelewij, L.; Naja, M.; Radziszewska, A.; Wincup, C.; Peckham, H.; A Isenberg, D.; Ioannou, Y.; et al. Disease-Associated and Patient-Specific Immune Cell Signatures in Juvenile-Onset Systemic Lupus Erythematosus: Patient Stratification Using a Machine-Learning Approach. Lancet Rheumatol. 2020, 2, e485–e496. [Google Scholar] [CrossRef]
- Nelke, C.; Schroeter, C.B.; Barman, S.; Stascheit, F.; Masanneck, L.; Theissen, L.; Huntemann, N.; Walli, S.; Cengiz, D.; Dobelmann, V.; et al. Identification of Disease Phenotypes in Acetylcholine Receptor-Antibody Myasthenia Gravis Using Proteomics-Based Consensus Clustering. eBioMedicine 2024, 105, 105231. [Google Scholar] [CrossRef]
- Smith, J.; Lee, K.; Patel, R. Precision Medicine in Diabetes: Application of K-Means Clustering to Optimize Treatment. J. Med. Inform. 2024, 12, 105–120. [Google Scholar]
- Zhang, X.; Li, Y.; Wu, H.; Guo, S. Using K-Means Clustering to Identify Novel Phenotypes of Acute Ischemic Stroke. Front. Neurol. 2024, 15, 224. [Google Scholar]
- Dutta, A.; Pal, A.; Bhadra, M.; Khan, M.A.; Chakraborty, R. An Improved K-Means Algorithm for Effective Medical Image Segmentation. Math. Comput. Model. 2024, in press. [Google Scholar]
- Madhukar, N.S.; Khade, P.K.; Huang, L.; Gayvert, K.; Galletti, G.; Stogniew, M.; Allen, J.E.; Giannakakou, P.; Elemento, O. A Bayesian Machine Learning Approach for Drug Target Identification Using Diverse Data Types. Nat. Commun. 2019, 10, 5221. [Google Scholar] [CrossRef]
- Gerdes, H.; Casado, P.; Dokal, A.; Hijazi, M.; Akhtar, N.; Osuntola, R.; Rajeeve, V.; Fitzgibbon, J.; Travers, J.; Britton, D.; et al. Drug Ranking Using Machine Learning Systematically Predicts the Efficacy of Anti-Cancer Drugs. Nat. Commun. 2021, 12, 1850. [Google Scholar] [CrossRef]
- Bonazzola, R.; Ferrante, E.; Ravikumar, N.; Xia, Y.; Keavney, B.; Plein, S.; Syeda-Mahmood, T.; Frangi, A.F. Unsupervised Ensemble-Based Phenotyping Enhances Discoverability of Genes Related to Left-Ventricular Morphology. Nat. Mach. Intell. 2024, 6, 291–306. [Google Scholar] [CrossRef]
- Leonardsen, E.H.; Persson, K.; Grødem, E.; Dinsdale, N.; Schellhorn, T.; Roe, J.M.; Vidal-Piñeiro, D.; Sørensen, Ø.; Kaufmann, T.; Westman, E.; et al. Constructing Personalized Characterizations of Structural Brain Aberrations in Patients with Dementia Using Explainable Artificial Intelligence. NPJ Digit. Med. 2024, 7, 110. [Google Scholar] [CrossRef]
- Sturm, D.; Capper, D.; Andreiuolo, F.; Gessi, M.; Kölsche, C.; Reinhardt, A.; Sievers, P.; Wefers, A.K.; Ebrahimi, A.; Suwala, A.K.; et al. Multiomic Neuropathology Improves Diagnostic Accuracy in Pediatric Neuro-Oncology. Nat. Med. 2023, 29, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Kropivsek, K.; Kachel, P.; Goetze, S.; Wegmann, R.; Festl, Y.; Severin, Y.; Hale, B.D.; Mena, J.; van Drogen, A.; Dietliker, N.; et al. Ex Vivo Drug Response Heterogeneity Reveals Personalized Therapeutic Strategies for Patients with Multiple Myeloma. Nat. Cancer 2023, 4, 734–753. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.R.; Wang, S.; Coy, S.; Chen, Y.-A.; Yapp, C.; Tyler, M.; Nariya, M.K.; Heiser, C.N.; Lau, K.S.; Santagata, S.; et al. Multiplexed 3D Atlas of State Transitions and Immune Interaction in Colorectal Cancer. Cell 2023, 186, 363–381.e19. [Google Scholar] [CrossRef]
- Mahdavi, M.; Choubdar, H.; Rostami, Z.; Niroomand, B.; Levine, A.T.; Fatemi, A.; Bolhasani, E.; Vahabie, A.-H.; Lomber, S.G.; Merrikhi, Y. Hybrid Feature Engineering of Medical Data via Variational Autoencoders with Triplet Loss: A COVID-19 Prognosis Study. Sci. Rep. 2023, 13, 2827. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Yang, D.; Rothberg, B.E.G.; Chang, H.; Xu, T. Unsupervised and Supervised Learning with Neural Network for Human Transcriptome Analysis and Cancer Diagnosis. Sci. Rep. 2020, 10, 19106. [Google Scholar] [CrossRef]
- Wegmann, R.; Bankel, L.; Festl, Y.; Lau, K.; Lee, S.; Arnold, F.; Cappelletti, V.; Fehr, A.; Picotti, P.; Dedes, K.J.; et al. Molecular and Functional Landscape of Malignant Serous Effusions for Precision Oncology. Nat. Commun. 2024, 15, 8544. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yao, Y.; Wang, Y.; Yu, T.; Cai, W.; Zhou, D.; Yin, F.; Liu, W.; Liu, Y.; Xie, C.; et al. An End-to-End Deep Learning Method for Mass Spectrometry Data Analysis to Reveal Disease-Specific Metabolic Profiles. Nat. Commun. 2024, 15, 7136. [Google Scholar] [CrossRef]
- He, D.; Liu, Q.; Wu, Y.; Xie, L. A Context-Aware Deconfounding Autoencoder for Robust Prediction of Personalized Clinical Drug Response from Cell-Line Compound Screening. Nat. Mach. Intell. 2022, 4, 879–892. [Google Scholar] [CrossRef]
- Chamberland, M.; Genc, S.; Tax, C.M.W.; Shastin, D.; Koller, K.; Raven, E.P.; Cunningham, A.; Doherty, J.; van den Bree, M.B.; Parker, G.D.; et al. Detecting Microstructural Deviations in Individuals with Deep Diffusion MRI Tractometry. Nat. Comput. Sci. 2021, 1, 598–606. [Google Scholar] [CrossRef]
- Kawi, O.; Clawson, K.; Dunn, P.; Knight, D.; Hodgson, J.; Peng, Y. Medical Formulation Recognition (MFR) Using Deep Feature Learning and One Class SVM. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Wang, Y.; Ji, M.; Jiang, S.; Wang, X.; Wu, J.; Duan, F.; Fan, J.; Huang, L.; Ma, S.; Fang, L.; et al. Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning. Nat. Mach. Intell. 2020, 2, 337–346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trezza, A.; Visibelli, A.; Roncaglia, B.; Spiga, O.; Santucci, A. Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Appl. Sci. 2024, 14, 9305. https://doi.org/10.3390/app14209305
Trezza A, Visibelli A, Roncaglia B, Spiga O, Santucci A. Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Applied Sciences. 2024; 14(20):9305. https://doi.org/10.3390/app14209305
Chicago/Turabian StyleTrezza, Alfonso, Anna Visibelli, Bianca Roncaglia, Ottavia Spiga, and Annalisa Santucci. 2024. "Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI" Applied Sciences 14, no. 20: 9305. https://doi.org/10.3390/app14209305
APA StyleTrezza, A., Visibelli, A., Roncaglia, B., Spiga, O., & Santucci, A. (2024). Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Applied Sciences, 14(20), 9305. https://doi.org/10.3390/app14209305