Predicting the Open Porosity of Industrial Mortar Applied on Different Substrates: A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
- Bulk density of the hardened product: 1400 to 1500 kg/m3;
- Compressive strength: >1.35 N/mm2;
- Adherence: ≥0.25 N/mm2;
- Water vapor permeability (µ): ≤35;
- Water absorption: Wc0.
2.1. Test Procedures
2.2. Database
2.3. Machine Learning Algorithms for Predicting Mortar Open Porosity
2.4. Evaluation Metrics
- MAE (Mean Absolute Error);
- MSE (Mean Squared Error);
- RMSE (Root Mean Squared Error);
- R2 (Coefficient of Determination).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buildings and Construction—European Commission. Available online: https://single-market-economy.ec.europa.eu/industry/sustainability/buildings-and-construction_en (accessed on 3 July 2024).
- Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenço, P.B. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [Google Scholar] [CrossRef]
- Saha, S.K.; Pradhan, S.; Barai, S.V. Use of machine learning based technique to X-ray microtomographic images of concrete for phase segmentation at meso-scale. Constr. Build. Mater. 2020, 249, 118744. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Paraskevoudis, K.; Charitidis, C.A. Constituents phase reconstruction through applied machine learning in nanoindentation mapping data of mortar surface. J. Compos. Sci. 2019, 3, 63. [Google Scholar] [CrossRef]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the- art review and case studies. J. Cult. Herit. 2020, 47, 227–245. [Google Scholar] [CrossRef]
- Thai, H.T. Machine learning for structural engineering: A state-of-the-art review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Nunez, I.; Marani, A.; Flah, M.; Nehdi, M.L. Estimating compressive strength of modern concrete mixtures using computational intelligence: A systematic review. Constr. Build. Mater. 2021, 3, 125–279. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Sekula, P.; Ding, L. Machine learning in construction: From shallow to deep learning. Dev. Built Environ. 2021, 6, 100045. [Google Scholar] [CrossRef]
- Chaabene, W.B.; Flah, M.; Nehdi, M.L. Machine learning prediction of mechanical properties of concrete: Critical review. Constr. Build. Mater. 2020, 260, 119889. [Google Scholar] [CrossRef]
- Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment: State-of-the-art review. J. Build. Eng. 2021, 33, 101816. [Google Scholar] [CrossRef]
- Izbicki, R.; dos Santos, T.M. Machine Learning: A Statistical Approach; Izbicki, R., Ed.; UICLAP: Sao Paulo, Brazil, 2020. (In Portuguese) [Google Scholar]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire. Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Tran, T.H.; Hoang, N.D. Estimation of algal colonization growth on mortar surface using a hybridization of machine learning and metaheuristic optimization. Sādhanā 2017, 42, 929–939. [Google Scholar] [CrossRef]
- Van Mullem, T.; Anglani, G.; Dudek, M.; Vanoutrive, H.; Bumanis, G.; Litina, C.; De Belie, N. Addressing the need for standardization of test methods for self-healing concrete: An inter-laboratory study on concrete with macrocapsules. Sci. Technol. Adv. Mater. 2020, 21, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Morsali, S.; Qian, D.; Minary-Jolandan, M. Designing bioinspired brick-and-mortar composites using machine learning and statistical learning. Commun. Mater. 2020, 1, 12. [Google Scholar] [CrossRef]
- Sevim, U.K.; Bilgic, H.H.; Cansiz, O.F.; Ozturk, M.; Atis, C.D. Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques. Constr. Build. Mater. 2021, 271, 121584. [Google Scholar] [CrossRef]
- Oey, T.; Jones, S.; Bullard, J.W.; Sant, G. Machine learning can predict setting behavior and strength evolution of hydrating cement systems. J. Am. Ceram. Soc. 2020, 103, 480–490. [Google Scholar] [CrossRef]
- Carasek, H. Mechanisms and Factors Involved in the Adhesion of Portland Cement-Based Mortars Applied to Porous Substrates. Ph.D. Thesis, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil, 1996. (In Portuguese). [Google Scholar]
- Kazmierczak, C.; Brezezinski, D.E.; Collatto, D. Influence of base characteristics on tensile strength and pore distribution of a mortar. Estud. Tecnol. 2007, 3, 47–58. (In Portuguese) [Google Scholar]
- Torres, I.; Veiga, R.; Freitas, V. Influence of substrate characteristics on behavior of applied mortar. J. Mater. Civ. Eng. 2018, 30, 04018254. [Google Scholar] [CrossRef]
- Matias, G.; Torres, I.; Bellei, P.; Flores-Colen, I.; Silveira, D.; Travincas, R. Influence of the substrate in the porosimetry of hardened mortars. In Proceedings of the International Conference Construction, Energy, Environment e Sustainability, Coimbra, Portugal, 12–15 October 2021. [Google Scholar]
- Bellei, P.; Torres, I.; Flores-Colen, I.; Travincas, R.; Silveira, D. Study of cement mortars with different particle size sands after application to ceramic brick substrate. In Proceedings of the International Conference Construction, Energy, Environment e Sustainability, Coimbra, Portugal, 12–15 October 2021. [Google Scholar]
- Carvalho, A.N., Jr. Evaluation of the Adhesion of Mortared Coatings: A Contribution to the Identification of the Mechanical Adhesion System. Doctoral Thesis, Graduate Course in Metallurgical and Mining Engineering, Federal University of Minas Ge Rais, Belo Horizonte, Brazil, 2002. (In Portuguese). [Google Scholar]
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- EN 998-1; Specification for Mortar for Masonry. Part 1: Rendering and Plastering Mortar. CEN: Brussels, Belgium, 2010.
- Travincas, R.; Bellei, P.; Torres, I.; Flores-Colen, I.; Matias, G.; Silveira, D. The use of fibreglass mesh in the study of applied coating mortars. Coatings 2022, 12, 1091. [Google Scholar] [CrossRef]
- EN 1936:2008; Natural Stone Test Methods—Determination of Real Density and Apparent Density and of Total and Open Porosity. European Committee for Standardization: Brussels, Belgium, 2008.
- ISO 15148; Hygrothermal Performance of Building Materials and Products—Determination of Water Absorption Coefficient by Partial Immersion. European Committee for Standardization: Brussels, Belgium, 2002.
- EN 16322; Conservation of Cultural Heritage: Test Methods: Determination of Drying Properties. European Committee for Standardization: Brussels, Belgium, 2013.
- RILEM Test No. II.5—Evaporation Curve. RILEM 25-PEM, Provisional recommendations. These recommandés pour mesurer l’altération des pierres et évaluer l’efficacité des méthodes de traitement. Matér. Constr. 1980, 75, 205–207.
- EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization: Brussels, Belgium, 2019.
- Gouveia, J.P.M. Analysis of the Behavior of Mortars after Application on Substrates. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2021. (In Portuguese). [Google Scholar]
- Soares, K.M.P. The Influence of Traditional Supports on the Behavior of Lime Mortars. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2021. (In portuguese). [Google Scholar]
- Travincas, R.; Silveira, D.; Bellei, P.; Gouveia, J.; Matias, G.; Torres, I.; Flores-Colen, I. Performance and Accelerated Ageing of an Industrial Hydraulic Lime Mortar Applied on Different Substrates. Coatings 2024, 14, 819. [Google Scholar] [CrossRef]
- Travincas, R.; Torres, I.; Flores-Colen, I.; Francisco, M.; Bellei, P. The influence of the substrate type on the performance of an industrial cement mortar for general use. J. Build. Eng. 2023, 73, 106784. [Google Scholar] [CrossRef]
- Ross, S.M. Peirce’s criterion for the elimination of suspect experimental data. J. Eng. Technol. 2003, 20, 38–41. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 35–39. [Google Scholar]
- Mishra, M.; Bhatia, A.S.; Maity, D. Support vector machine for determining the compressive strength of brick-mortar masonry using NDT data fusion (case study: Kharagpur, India). SN Appl. Sci. 2019, 1, 564. [Google Scholar] [CrossRef]
- Gladshiya, V.B.; Sharmila, D.K. Analyzing the risk factors and predicting the learning ability of students during pandemic and comparing machine learning algorithms using Orange tool. Turk. J. Physiother. Rehabil. 2021, 32, 1411–1418. [Google Scholar]
Substrates | Bulk Density (kg/m3) | Open Porosity (%) | Aw (kg/(m2·s0.5) | |
---|---|---|---|---|
Mean | CS | 2224 ± 9 | 11.5 ± 0.4 | 0.023 ± 0.003 |
CB | 2113 ± 21 | 14.5 ± 1.0 | 0.332 ± 0.003 | |
LCB | 1319 ± 72 | 16.8 ± 1.4 | 0.308 ± 0.021 | |
HCB | 2071 ± 13 | 16.5 ± 1.5 | 0.037 ± 0.004 | |
SCB | 2059 ± 2 | 18.3 ± 0.3 | 0.104 ± 0.023 | |
Min/Max | CS | 2216/2241 | 10.9/11.8 | 0.013/0.026 |
CB | 2084/2138 | 13.3/15.6 | 0.326/0.336 | |
LCB | 1194/1401 | 15.1/18.3 | 0.289/0.348 | |
HCB | 2051/2082 | 15.1/18.7 | 0.031/0.042 | |
SCB | 2002/2096 | 17.0/19.3 | 0.066/0.134 |
Mortar | Bulk Density (kg/m3) | Open Porosity (%) | Aw (kg/(m2·s0.5) | Drying Index | CS (MPa) | |
---|---|---|---|---|---|---|
Mean | MHCB | 1574 ± 14 | 22.1 ± 0.9 | 0.18 ± 0.02 | 0.138 ± 0.012 | 4.96 ± 0.70 |
MSCB | 1570 ± 13 | 22.5 ± 0.6 | 0.26 ± 0.03 | 0.123 ± 0.008 | 6.27 ± 0.66 | |
MCP | 1528 ± 17 | 25.8 ± 1.0 | 0.16 ± 0.02 | 0.135 ± 0.012 | 3.94 ± 0.51 | |
MCB | 1540 ± 23 | 25.3 ± 1.3 | 0.17 ± 0.03 | 0.155 ± 0.014 | 3.97 ± 0.44 | |
MLCB | 1475 ± 18 | 30.3 ± 0.6 | 0.31 ± 0.02 | 0.117 ± 0.008 | 3.99 ± 0.35 | |
Min/Max | MHCB | 1551/1606 | 20.1/24.0 | 0.13/0.24 | 0.112/0.160 | 3.5/6.4 |
MSCB | 1533/1607 | 21.1/23.4 | 0.20/0.32 | 0.104/0.148 | 4.6/7.5 | |
MCP | 1499/1566 | 23.6/28.3 | 0.13/0.20 | 0.115/0.160 | 2.9/4.9 | |
MCB | 1496/1590 | 23.3/27.9 | 0.12/0.24 | 0.131/0.189 | 3.1/4.9 | |
MLCB | 1441/1518 | 29.3/31.5 | 0.26/0.35 | 0.104/0.133 | 3.2/4.7 |
ML Models | Training Set | |||
---|---|---|---|---|
MSE | RMSE | MAE | R2 | |
Support Vector Machine | 0.865 | 0.930 | 0.731 | 0.908 |
Random Forest | 0.901 | 0.949 | 0.735 | 0.904 |
Runs | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
1 | 1.101 | 1.049 | 0.796 | 0.889 |
2 | 1.117 | 1.057 | 0.793 | 0.870 |
3 | 0.954 | 0.771 | 0.587 | 0.942 |
4 | 0.953 | 0.976 | 0.814 | 0.907 |
5 | 1.011 | 1.005 | 0.816 | 0.868 |
6 | 0.810 | 0.900 | 0.690 | 0.909 |
7 | 0.914 | 0.956 | 0.749 | 0.897 |
8 | 1.045 | 1.022 | 0.748 | 0.905 |
9 | 1.121 | 1.059 | 0.814 | 0.880 |
10 | 0.839 | 0.916 | 0.748 | 0.894 |
Mean | 0.987 ± 0.112 | 0.971 ± 0.090 | 0.756 ± 0.072 | 0.896 ± 0.022 |
Runs | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
1 | 1.080 | 1.039 | 0.834 | 0.891 |
2 | 0.933 | 0.966 | 0.663 | 0.891 |
3 | 0.930 | 0.964 | 0.745 | 0.909 |
4 | 0.845 | 0.919 | 0.734 | 0.918 |
5 | 1.136 | 1.066 | 0.824 | 0.852 |
6 | 1.643 | 1.282 | 0.942 | 0.815 |
7 | 1.082 | 1.040 | 0.840 | 0.878 |
8 | 1.184 | 1.088 | 0.841 | 0.892 |
9 | 1.235 | 1.111 | 0.860 | 0.868 |
10 | 0.942 | 0.971 | 0.769 | 0.881 |
Mean | 1.101 ± 0.228 | 1.045 ± 0.104 | 0.805 ± 0.079 | 0.880 ± 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travincas, R.; Mendes, M.P.; Torres, I.; Flores-Colen, I. Predicting the Open Porosity of Industrial Mortar Applied on Different Substrates: A Machine Learning Approach. Appl. Sci. 2024, 14, 10780. https://doi.org/10.3390/app142310780
Travincas R, Mendes MP, Torres I, Flores-Colen I. Predicting the Open Porosity of Industrial Mortar Applied on Different Substrates: A Machine Learning Approach. Applied Sciences. 2024; 14(23):10780. https://doi.org/10.3390/app142310780
Chicago/Turabian StyleTravincas, Rafael, Maria Paula Mendes, Isabel Torres, and Inês Flores-Colen. 2024. "Predicting the Open Porosity of Industrial Mortar Applied on Different Substrates: A Machine Learning Approach" Applied Sciences 14, no. 23: 10780. https://doi.org/10.3390/app142310780
APA StyleTravincas, R., Mendes, M. P., Torres, I., & Flores-Colen, I. (2024). Predicting the Open Porosity of Industrial Mortar Applied on Different Substrates: A Machine Learning Approach. Applied Sciences, 14(23), 10780. https://doi.org/10.3390/app142310780