Comparative Analysis of Shear Bond Strength in Orthodontic Brackets Between Milled and 3D-Printed Definitive CAD/CAM Restorations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Treatment Application
2.3. Bracket Bonding Procedure
2.4. Shear Bond Strength (SBS) Test
2.5. Adhesive Remnant Index (ARI) Score
- 0: no adhesive remained on the bonded surface (adhesive failure of the cementation with the restoration).
- 1: less than 50% of the adhesive remained on the bonded surface (mixed adhesive and cohesive failure of the cementation; adhesive > cohesive).
- 2: more than 50% of the adhesive remained on the bonded surface (mixed adhesive and cohesive failure of the cementation; adhesive < cohesive).
- 3: 100% of the adhesive remained on the bonded surface (adhesive failure of the cementation with the bracket).
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Both CAD/CAM restorative materials (milled and 3D-printed) demonstrated adequate shear bond strength (SBS) for clinical use, with milled materials (LU and GR) showing significantly higher SBS values compared to 3D-printed materials (CT and CB).
- Surface treatments significantly improved SBS, with sandblasting (SB) and hydrofluoric acid etching (HF) yielding higher SBS values than diamond bur roughening (DB).
- Adhesive failure between the bracket and the restoration was more common, with most specimens showing no adhesive or less than 50% adhesive remaining on the surface.
- Sandblasted milled fabricated Lava Ultimate™ demonstrated the most favorable outcomes in terms of both SBS and ARI scores.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kollmuss, M.; Kist, S.; Goeke, J.E.; Hickel, R.; Huth, K.C. Comparison of chairside and laboratory CAD/CAM to conventional produced all-ceramic crowns regarding morphology, occlusion, and aesthetics. Clin. Oral Investig. 2016, 20, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Mainjot, A.K.; Dupont, N.M.; Oudkerk, J.C.; Dewael, T.Y.; Sadoun, M.J. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; Schmidtke, J.; Schmohl, L.; Schneider-Feyrer, S.; Rosentritt, M.; Hoelzig, H.; Kloess, G.; Vejjasilpa, K.; Schulz-Siegmund, M.; Fuchs, F.; et al. Characterisation of the filler fraction in cad/cam resin-based composites. Materials 2021, 14, 1986. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar] [CrossRef]
- Atta, I.; Bourauel, C.; Alkabani, Y.; Mohamed, N.; Kim, H.; Alhotan, A.; Ghoneima, A.; Elshazly, T. Physiochemical and mechanical characterisation of orthodontic 3D printed aligner material made of shape memory polymers (4D aligner material). J. Mech. Behav. Biomed. Mater. 2024, 150, 106337. [Google Scholar] [CrossRef]
- Sharif, M.; Bourauel, C.; Ghoneima, A.; Schwarze, J.; Alhotan, A.; Elshazly, T.M. Force system of 3D-printed orthodontic aligners made of shape memory polymers: An in vitro study. Virtual Phys. Prototyp. 2024, 19, e2361857. [Google Scholar] [CrossRef]
- Elshazly, T.M.; Keilig, L.; Alkabani, Y.; Ghoneima, A.; Abuzayda, M.; Talaat, W.; Talaat, S.; Bourauel, C.P. Potential Application of 4D Technology in Fabrication of Orthodontic Aligners. Front. Mater. 2022, 8, 794536. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J. Additive Manufacturing for Complete Denture Fabrication: A Narrative Review. J. Prosthodont. 2022, 31, 47–51. [Google Scholar] [CrossRef]
- Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. [Google Scholar] [CrossRef]
- Elshazly, T.M.; Keilig, L.; Salvatori, D.; Chavanne, P.; Aldesoki, M.; Bourauel, C. Effect of Trimming Line Design and Edge Extension of Orthodontic Aligners on Force Transmission: An in vitro Study. J. Dent. 2022, 125, 104276. [Google Scholar] [CrossRef]
- Abdelnaby, Y.L. Effects of cyclic loading on the bond strength of metal orthodontic brackets bonded to a porcelain surface using different conditioning protocols. Angle Orthod. 2011, 81, 1064–1069. [Google Scholar] [CrossRef]
- Abu Alhaija, E.S.J.; Abu AlReesh, I.A.; AlWahadni, A.M.S. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces. Eur. J. Orthod. 2010, 32, 274–280. [Google Scholar] [CrossRef]
- Emsermann, I.; Eggmann, F.; Krastl, G.; Weiger, R.; Amato, J. Influence of Pretreatment Methods on the Adhesion of Composite and Polymer Infiltrated Ceramic CAD-CAM Blocks. J. Adhes. Dent. 2019, 21, 433–443. [Google Scholar] [CrossRef]
- Amaral Colombo, L.D.; Murillo-Gómez, F.; De Goes, M.F. Bond Strength of CAD/CAM Restorative Materials Treated with Different Surface Etching Protocols. J. Adhes. Dent. 2019, 21, 307–317. [Google Scholar] [CrossRef]
- Van Meerbeek, B. State of the art of self-etch adhesives. Dent. Mat. 2010, 26, 17–28. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R. Bonding of composite resins to dentin. J. Dent. Res. 2002, 81, 232–236. [Google Scholar]
- de Almeida, R.M.; Hass, V.; Sasaki, D.Y.; Berger, S.B.; Fernandes, T.M.; Tonetto, M.R. The impact of different surface treatments on the shear bond strength of orthodontic metal brackets applied to different CAD/CAM composites. J. Clin. Exp. Dent. 2021, 13, 608–613. [Google Scholar] [CrossRef]
- Iijima, M.; Ito, S.; Muguruma, T.; Saito, T.; Mizoguchi, I. Bracket bond strength comparison between new unfilled experimental self-etching primer adhesive and conventional filled adhesives. Angle Orthod. 2010, 80, 1095–1099. [Google Scholar] [CrossRef]
- Karan, S.; Büyükyilmaz, T.; Toroǧlu, M.S. Orthodontic bonding to several ceramic surfaces: Are there acceptable alternatives to conventional methods? Am. J. Orthod. Dentofac. Orthop. 2007, 132, 144.e7–144.e14. [Google Scholar] [CrossRef]
- Falkensammer, F.; Freudenthaler, J.; Pseiner, B.; Bantleon, H.P. Influence of surface conditioning on ceramic microstructure and bracket adhesion. Eur. J. Orthod. 2012, 34, 498–504. [Google Scholar] [CrossRef]
- Reynolds, I.R. A Review of Direct Orthodontic Bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Elsaka, S.E. Influence of surface treatments on bond strength of metal and ceramic brackets to a novel CAD/CAM hybrid ceramic material. Odontology 2016, 104, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil, A.; Lassila, L.V.J.; Vallittu, P.K. Composite-composite repair bond strength: Effect of different adhesion primers. J. Dent. 2003, 31, 521–525. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Pahinis, K.; Saltidou, K.; Dionysopoulos, D.; Tsitrou, E. Evaluation of the surface characteristics of dental CAD/CAM materials after different surface treatments. Materials 2020, 13, 981. [Google Scholar] [CrossRef]
- Gilbert, S.; Keul, C.; Roos, M.; Edelhoff, D.; Stawarczyk, B. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: Three different in vitro test methods. Clin. Oral Investig. 2016, 20, 227–236. [Google Scholar] [CrossRef]
- Peumans, M.; Valjakova, E.B.; De Munck, J.; Mishevska, C.B.; Van Meerbeek, B. Bonding effectiveness of luting composites to different CAD/CAM materials. J. Adhes. Dent. 2016, 18, 289–302. [Google Scholar] [CrossRef]
- Özcan, M.; Volpato, C.Â.M. Surface Conditioning and Bonding Protocol for Nanocomposite Indirect Restorations: How and Why? J. Adhes. Dent. 2016, 18, 82. [Google Scholar] [CrossRef]
- Reymus, M.; Roos, M.; Eichberger, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Bonding to new CAD/CAM resin composites: Influence of air abrasion and conditioning agents as pretreatment strategy. Clin. Oral. Investig. 2019, 23, 529–538. [Google Scholar] [CrossRef]
- Strasser, T.; Preis, V.; Behr, M.; Rosentritt, M. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clin. Oral. Investig. 2018, 22, 2787–2797. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Matinlinna, J.P.; Vallittu, P.K. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int. J. Mol. Sci. 2016, 17, 822. [Google Scholar] [CrossRef]
- Duzyol, M.; Sagsoz, O.; Polat Sagsoz, N.; Akgul, N.; Yildiz, M. The Effect of Surface Treatments on the Bond Strength Between CAD/CAM Blocks and Composite Resin. J. Prosthodont. 2016, 25, 466–471. [Google Scholar] [CrossRef]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämerd, N.; Reiche, S.; Braunf, A.; Roggendorfg, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25911826 (accessed on 9 March 2024).
- Özcan, M.; Valandro, L.F.; Amaral, R.; Leite, F.; Bottino, M.A. Bond strength durability of a resin composite on a reinforced ceramic using various repair systems. Dent. Mater. 2009, 25, 1477–1483. [Google Scholar] [CrossRef]
- Bayram, M.; Yeşilyurt, C.; Kuşgöz, A.; Ülker, M.; Nur, M. Shear bond strength of orthodontic brackets to aged resin composite surfaces: Effect of surface conditioning. Eur. J. Orthod. 2011, 33, 174–179. [Google Scholar] [CrossRef]
- Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Bona, A.D. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning. J. Adhes. Dent. 2006, 8, 175–181. [Google Scholar]
- Yüzbaşıoğlu, E.; Sayar-Torun, G.; Özcan, M. Adhesion of orthodontic brackets to indirect laboratory-processed resin composite as a function of surface conditioning methods and artificial aging. J. Adhes. Sci. Technol. 2016, 30, 2565–2572. [Google Scholar] [CrossRef]
- Alavi, S.; Shirani, F.; Zarei, Z.; Raji, S. Effect of different surface treatment with panaviaV5 on shear bond strength of metal brackets to silver amalgam. Dent. Res. J. 2021, 18, 9. [Google Scholar] [CrossRef]
- Asiry, M.A.; AlShahrani, I.; Alaqeel, S.M.; Durgesh, B.H.; Ramakrishnaiah, R. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength. J. Mech. Behav. Biomed. Mater. 2018, 84, 22–27. [Google Scholar] [CrossRef]
Material | Material Type | Composition | Manufacturer | |
---|---|---|---|---|
Filler | Polymer | |||
Lava Ultimate™ (LU) | Milling block nanoceramic composite resin | 80 wt.% fillers of silica (size 20 nm), zirconia (size 4–11 nm) nanoparticles | 20 wt. % Bis-GMA, UDMA, Bis-EMA, TEGDMA | 3MTM ESPE, St. Paul, MN, USA |
Grandio™ (GR) | Milling block nanohybrid composite resin | 86 wt.% nanohybrid fillers (particle size 20–60 nm) | 14 wt.% UDMA, DMA | VOCO GmbH, Cuxhaven, Germany |
Crowntec™ (CT) | 3D-printed composite resin | 30–50 wt.% fillers (particle size 0.7 μm) silanized dental glass, pyrogenic silica | Esterification products of 4,4′-isopropylidiphenol, ethoxylated and 2-methylprop-2enoic acid | Saremco Dental AG, Rebstein, Switzerland |
C&B Permanent™ (CB) | 3D-printed composite resin | N/A | Diurethane dimethacrylate, 2-Propenoic acid, 2-methyl-, (1-methylethylidene) bis (4,1-phenyleneoxy(1-methyl-2,1-ethanediyl)) ester, 2-HEMA, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, and additives | ODS, Seoul, Republic of Korea |
Material | Surface Treatment | |||
---|---|---|---|---|
C | HF | DB | SB | |
Lava™ Ultimate (LU) | 14.8 ± 1.2 Ac | 19.6 ± 1.8 Cc | 17.2 ± 1.4 Bc | 20.4 ± 1.5 Cc |
Grandio™ (GR) | 13.9 ± 0.7 Ac | 19.7 ± 1.6 Cc | 17.5 ± 1.6 Bc | 20.0 ± 1.0 Cc |
Crowntec™ (CT) | 5.7 ± 0.7 Aa | 16.1 ± 1.5 Ca | 9.7 ± 0.7 Ba | 15.5 ± 0.6 Ca |
C&B Permanent™ (CB) | 11.5 ± 1.4 Ab | 17.4 ± 1.3 Cb | 14.8 ± 1.2 Bb | 18.2 ± 0.9 Cb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldosari, M.A.; Anany, N.M.; Alaqeely, R.; Alsenaidi, J.; Sufyan, A.; Talaat, S.; Bourauel, C.; Elshazly, T.M.; Alhotan, A. Comparative Analysis of Shear Bond Strength in Orthodontic Brackets Between Milled and 3D-Printed Definitive CAD/CAM Restorations. Appl. Sci. 2024, 14, 9530. https://doi.org/10.3390/app14209530
Aldosari MA, Anany NM, Alaqeely R, Alsenaidi J, Sufyan A, Talaat S, Bourauel C, Elshazly TM, Alhotan A. Comparative Analysis of Shear Bond Strength in Orthodontic Brackets Between Milled and 3D-Printed Definitive CAD/CAM Restorations. Applied Sciences. 2024; 14(20):9530. https://doi.org/10.3390/app14209530
Chicago/Turabian StyleAldosari, Mohammad A., Noha M. Anany, Razan Alaqeely, Jawaher Alsenaidi, Aref Sufyan, Sameh Talaat, Christoph Bourauel, Tarek M. Elshazly, and Abdulaziz Alhotan. 2024. "Comparative Analysis of Shear Bond Strength in Orthodontic Brackets Between Milled and 3D-Printed Definitive CAD/CAM Restorations" Applied Sciences 14, no. 20: 9530. https://doi.org/10.3390/app14209530
APA StyleAldosari, M. A., Anany, N. M., Alaqeely, R., Alsenaidi, J., Sufyan, A., Talaat, S., Bourauel, C., Elshazly, T. M., & Alhotan, A. (2024). Comparative Analysis of Shear Bond Strength in Orthodontic Brackets Between Milled and 3D-Printed Definitive CAD/CAM Restorations. Applied Sciences, 14(20), 9530. https://doi.org/10.3390/app14209530