Equivalent Simulation Study of Delta-Rotor Engine
Abstract
:1. Introduction
2. Equivalence of Movement Modes
3. Combustion Process Equivalence
4. Establishment and Verification of Equivalent Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, X.; Liu, H. Research Progress of Key Technologies of Aviation Piston Engine for UAV. Small Intern. Combust. Engine Veh. Technol. 2021, 50, 79–87. [Google Scholar]
- Luo, X. Development history and innovative achievements of Roche rotary engines. Intern. Combust. Engine Accessories 2021, 13, 202–205. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. GE Aerospace’s Roadmap for Next-Generation Aerospace Power Technology. Aviat. Power 2023, 4, 24–27. [Google Scholar]
- Wu, S. Research on Technical Characteristics and Application of Unmanned Aerial Vehicle Power Unit. Shanghai Energy Conserv. 2022, 12, 1536–1540. [Google Scholar] [CrossRef]
- Li, H.; Sun, F. The Application Development and Key Technologies of Rotary Engine. Small Intern. Combust. Engine Veh. Technol. 2023, 52, 68–74. [Google Scholar]
- Dark, H.E. The Wankel Engine: Introduction and Guide; Fitzhenry and Whiteside Ltd.: Toronto, ON, Canada, 1974. [Google Scholar]
- Faith, N. The Wankel Engine: The Story of the Revolutionary Rotary Engine; George Allen and Unwin Ltd.: London, UK, 1976. [Google Scholar]
- Hege, J. The Wankel Rotary Engine: A History; McFarland and Company Inc.: Jefferson, NC, USA, 2006. [Google Scholar]
- Mitianiec, W. Modelling and simulation of working processes in wankel engine with direct hydrogen injection system. Combust. Engines 2015, 54, 42–52. [Google Scholar] [CrossRef]
- Peden, M. Study of Direct Injection Limitations on a Wankel Engine; University of Bath: Bath, UK, 2017. [Google Scholar]
- Tomlinson, A. Modelling of Wankel Engine Performance in Commercial Piston Engine Software; University of Bath: Bath, UK, 2016. [Google Scholar]
- Wendeker, M.; Grabowski, L.; Pietrykowski, K.; Margryta, P. Phenomenological Model of a Wankel Engine; Lublin University of Technology: Lublin, Poland, 2012. [Google Scholar]
- Widener, S.K.; Belvoir, F.A. Survey of Technology for Hybrid Vehicle Auxiliary Power Units; Report TFLRF No. 311; Interim: Fort Belvoir, VA, USA, 1995. [Google Scholar]
- Norman, T.J.A. Performance Model of a Spark Ignition Wankel Engine: Including the Effects of Crevice Volumes, Gas Leakage and Heat Transfer; Massachusetts Institute of Technology: Cambridge, MA, USA, 1983. [Google Scholar]
- Tartakovsky, L.; Vladimir, B.; Marcel, G. Simulation of Wankel Engine Performance Using Commercial Software for Piston Engines; SAE Technical Paper; SAE Publication: Thousand Oaks, CA, USA, 2012; Volume 34, pp. 90–98. [Google Scholar]
- Dost, T.; Getzlaff, J. Design and Simulation of a Multi Fuel Gas Mixture System of a Wankel Rotary Engine; SAE Technical Paper; SAE Publication: Thousand Oaks, CA, USA, 2020; Volume 1, pp. 5–48. [Google Scholar]
- Peden, M.; Turner, M.; Turner, J.W.G.; Bailey, N. Comparison of 1-D Modelling Approaches for Wankel Engine Performance Simulation and Initial Study of the Direct Injection Limitations; SAE Technical Paper Series; SAE Publication: Thousand Oaks, CA, USA, 2018; Volume 1, pp. 14–52. [Google Scholar]
- Cihan, Ö.; Aydın, M.; Kutlar, O.A. Experimental and 1-D model analysis of wankel engine at part load. Int. J. Adv. Automot. Technol. 2018, 3, 197–204. [Google Scholar]
- Danieli, G.A.; Keck, J.C.; Heywood, J.B. Experimental and Theoretical Analysis of Wankel Engine Performance; SAE Technical Paper; SAE Publication: Thousand Oaks, CA, USA, 1978; Volume 18, pp. 91–104. [Google Scholar] [CrossRef]
- Georgios, Z. Mathematical and Numerical Modelling of Flow and Combustion Processes in a Spark Ignition Engine; Department of Applied Mathematics, University of Wisconsin: Madison, WI, USA, 2005. [Google Scholar]
- Liu, G.; Sheng, J.; Bei, T.; Liu, R. Analysis of fuel consumption rate and nitrogen oxide emission characteristics of two-stroke spark ignition aviation kerosene engines. Mech. Des. Manuf. 2023, 3, 203–206+211. [Google Scholar]
- Wang, R.; Ding, W.; Wen, R.; Liao, Z.; Li, H.; Guo, Z. Loading optimization of Fischer-Tropsch synthesis using artificial neural networks and genetic algorithm. J. Chem. Eng. High. Educ. 2023, 37, 608–614. [Google Scholar] [CrossRef]
- Yin, S.; Yu, J.; Song Bin Guo, Y.; Li, C.; Lv, Y. GEO target servicing mission scheduling based on multi-group chaotic genetic algorithm. Syst. Eng. Electron. 2024, 46, 914–921. [Google Scholar]
- Ye, Y.; Gao, W.; Li, Y. Numerical study of the effect of injection timing on the knock combustion in a direct-injection hydrogen engine. Int. J. Hydrogen Energy 2020, 45, 27904–27919. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Liu, X.; Ma, J. Multi parameter optimization design of spring decoupling structure using genetic algorithm for three-axis standard vibration table. J. Instrum. 2023, 44, 167–176. [Google Scholar] [CrossRef]
- Lai, C.; Wang, S.; Hu, B.; Wu, C.; Li, Y. Multi-objective optimization of a five-stroke engine based on GT-power. J. Chongqing Univ. Technol. (Nat. Sci.) 2023, 37, 77–85. [Google Scholar]
- Liu, P.; Yin, C.; Jia, N.; Fan, X.; Yang, Q. Short term wind power prediction based on niche genetic algorithm and radial basis function surrogate model. J. Sol. Energy 2024, 45, 6–15. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, R.; Zeng, F. Simulation Analysis and Experimental Research on Key Parameters of Four-Stroke Compressed Air Engine. Mech. Des. Manuf. 2021, 7, 71–75. [Google Scholar] [CrossRef]
- Yang, X.; He, C. Simulation of a 6-cylinder turbocharged diesel engine based on GT Power. Jiangsu Agric. Sci. 2015, 43, 431–434. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Creation radius (mm) | 60 |
Eccentricity (mm) | 10 |
Rotor width (mm) | 42 |
Translational distance (mm) | 1.45 |
Speed (r/min) | 8000 |
Single cylinder volume (cc) | 133 |
Compression ratio | 10 |
Ignition advance angle | 30° BTDC |
Ignition source | Single spark plug |
Fuel type | Gasoline |
Jet strategy | Premixed intake duct |
Air–fuel ratio | 1 |
Ignition diameter (mm) | 8 |
Ignition energy (J) | 0.08 |
Engine power (kw) | 12.3 |
Torque (N.m) | 15.66 |
Oil consumption (g/kw.h) | 402.3 |
Index | Volume Inside the Cylinder/m3 | Cylinder Pressure/MPa | Cylinder Temperature/K | In-Cylinder Mass/kg |
---|---|---|---|---|
Maximum Deviation | 7.0551 × 10−7 | 0.1503 | 68.3762 | 1.8849 × 10−6 |
Average Deviation | 3.8096 × 10−7 | 0.0736 | 26.6056 | 1.3210 × 10−6 |
Maximum Relative Error | 1.1398% | 9.0314% | 9.7714% | 1.0964% |
Average Relative Error | 0.6037% | 5.2542% | 2.6841% | 0.7708% |
Crank Speed | 7500 r/min | 7000 r/min | ||
---|---|---|---|---|
Index | Cylinder Pressure | Cylinder Temperature | Cylinder Pressure | Cylinder Temperature |
Maximum relative error | 9.4687% | 10.2456% | 9.8495% | 10.0643% |
Average relative error | 5.6325% | 2.8594% | 5.8749% | 3.1859% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Li, L.; Tian, Y.; Zou, R. Equivalent Simulation Study of Delta-Rotor Engine. Appl. Sci. 2024, 14, 9611. https://doi.org/10.3390/app14209611
Shi Y, Li L, Tian Y, Zou R. Equivalent Simulation Study of Delta-Rotor Engine. Applied Sciences. 2024; 14(20):9611. https://doi.org/10.3390/app14209611
Chicago/Turabian StyleShi, Yaoyao, Liangyu Li, Ye Tian, and Run Zou. 2024. "Equivalent Simulation Study of Delta-Rotor Engine" Applied Sciences 14, no. 20: 9611. https://doi.org/10.3390/app14209611
APA StyleShi, Y., Li, L., Tian, Y., & Zou, R. (2024). Equivalent Simulation Study of Delta-Rotor Engine. Applied Sciences, 14(20), 9611. https://doi.org/10.3390/app14209611