Fatigue Crack Growth Monitoring and Investigation on G20Mn5QT Cast Steel and Welds via Acoustic Emission
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Specimens
2.2. Fatigue Crack Growth Tests
2.3. AE Setup
3. Results and Discussion
3.1. Fatigue Crack Growth and AE Activity
3.2. Cluster Analysis and Pattern Recognition
3.3. AE Behaviors and Fatigue Crack Growth Mechanism
3.4. Fractography Investigation
4. Conclusions
- (1)
- The AE activities vary greatly in different fatigue crack growth stages. The AE release activity of G20Mn5QT and butt welds reaches a peak at the end of fatigue crack stage I and decreases subsequently, demonstrating a relatively low level in the first half of stage II. The AE release activity returns to an increasing trend in the middle of stage II. The regrowth point for G20Mn5QT occurs earlier than that for the weld. Moreover, stage II of the welds can be further divided into two sub-stages based on the AE activity; however, G20Mn5QT does not exhibit such behavior.
- (2)
- By introducing the K-means cluster algorithm, the AE signals for both G20Mn5QT and the weld can be divided into three clusters: cluster 1 pertains to the burst type with a short rise time and duration and is related to tensile crack fractures during fatigue crack growth; cluster 2 pertains to the continuous type with a short rise time and longer duration and is related to cyclic plastic deformations before the crack tip; and cluster 3 signals are similar to the burst type albeit with a long rise time and duration, and they are related to shear cracks.
- (3)
- Fatigue crack growth is a combination of cyclic plastic deformations before the crack tip, tensile crack fractures, and shear crack fractures. Crack tip advancement can be regarded as the discontinuous process of the critical area brittlely rupturing as a large number of tensile crack fractures and rare shear crack fractures with fatigue damage due to cyclic plastic deformation reach critical status. The fatigue damage accumulation process releases around half of the total energy. The energy released by a single tensile crack fracture is quite small, but a large number of tensile crack fractures make the total accumulated energy slightly less than the energy released by fatigue damage. The energy released by a single shear crack fracture is larger than that released by a single tensile crack fracture, but the total accumulated energy is the least.
- (4)
- Shear crack fractures in fatigue crack growth are induced by local multi-states of stress and strain caused by casting or welding defects. Shear crack fractures demonstrate discontinuous occurrences and pertain to the release of large average energies. The material weakening caused by the defects of G20Mn5QT is greater than that caused by the defects of the weld.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DIN EN 10293; Steel Castings for General Engineering Steel Castings for General Engineering Uses. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- Albiez, M.; Vallée, T.; Fricke, H.; Ummenhofer, T. Adhesively bonded steel tubes—Part I: Experimental investigations. Int. J. Adhes. Adhes. 2018, 90, 199–210. [Google Scholar] [CrossRef]
- Wei, Z.; Jin, H.; Chen, G. Traction structural stress analysis of fatigue behaviors of girth butt weld within welded cast steel joints. Int. J. Press. Vessel. Pip. 2020, 179, 104027. [Google Scholar] [CrossRef]
- Huang, S.; Shang, C.; Cai, L.; Wang, Z.; Hao, X. Effects of Cooling Procedures on Postfire Mechanical Properties and Fracture Resistance of G20Mn5QT Cast Steel. J. Mater. Civ. Eng. 2023, 35, 04023243. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Lu, Y.; Xu, L.; Xin, J. Cyclic constitutive models for G20Mn5QT cast steel at low temperatures. J. Constr. Steel Res. 2022, 193, 107260. [Google Scholar] [CrossRef]
- Xu, J.; Sun, T.; Xu, Y.; Han, Q. Fracture toughness research of G20Mn5QT cast steel based on the acoustic emission technique. Constr. Build. Mater. 2020, 230, 116904. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Xu, J.; Han, Q. Fatigue crack growth of G20Mn5QT cast steel based on a two-parameter driving force model. Eng. Fract. Mech. 2019, 208, 13–26. [Google Scholar] [CrossRef]
- Han, Q.; Guo, Q.; Yin, Y.; Xing, Y. Fatigue behaviour of G20Mn5QT cast steel and butt welds with Q345B steel. Int. J. Steel Struct. 2016, 16, 139–149. [Google Scholar] [CrossRef]
- Xu, J.; Sun, T.; Wen, S.; Wang, X.; Liu, X. J-R curve determination of G20Mn5QT cast steel using CT specimen with varying in-plane and out-of-plane constraints based on Normalization Method and GTN model. J. Mater. Res. Technol. 2022, 18, 3502–3519. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, R.; Han, Q.; Yu, X.; Yu, Z. Experimental investigation on the corrosion and corrosion fatigue behavior of butt weld with G20Mn5QT cast steel and Q355D steel under dry–wet cycle. Eng. Fail. Anal. 2022, 134, 105977. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Y.; Yin, Y.; Zhang, S. Fatigue tests on notched specimens of G20Mn5QT cast steel and life prediction by a new strain-based method. Arch. Civ. Mech. Eng. 2020, 20, 13. [Google Scholar] [CrossRef]
- Eaton, M.J.; Crivelli, D.; Williams, R.; Byrne, C. Monitoring the drilling process of carbon fibre laminates using acoustic emission. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1182–1193. [Google Scholar] [CrossRef]
- Liu, S.; Qiao, S.; Xu, L.; Zhang, S.Z.; Ma, L.H.; Zhou, W. Acoustic emission monitoring and damage evaluation of bi-adhesive joint patch-repaired composites. J. Adhes. Sci. Technol. 2023, 37, 2461–2483. [Google Scholar] [CrossRef]
- Seyyednourani, M.; Akgun, S.; Ulus, H.; Yildiz, M.; Sas, H.S. Experimental investigation on Compression-After-Impact (CAI) response of aerospace grade thermoset composites under low-temperature conditions assisted with acoustic emission monitoring. Compos. Struct. 2023, 321, 117260. [Google Scholar] [CrossRef]
- Gagar, D.; Foote, P.; Irving, P.E. Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: Implications for structural health monitoring. Int. J. Fatigue 2015, 81, 117–127. [Google Scholar] [CrossRef]
- Shi, S.; Wu, G.; Chen, H.; Zhang, S. Acoustic Emission Monitoring of Fatigue Crack Growth in Hadfield Steel. Sensors 2023, 23, 6561. [Google Scholar] [CrossRef]
- Han, Z.; Luo, H.; Cao, J.; Wang, H. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds. Mater. Sci. Eng. A 2011, 528, 7751–7756. [Google Scholar] [CrossRef]
- Kumar, J.; Ahmad, S.; Mukhopadhyay, C.K.; Jayakumar, T.; Kumar, V. Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA steel. Nondestruct. Test. Eval. 2016, 31, 77–96. [Google Scholar] [CrossRef]
- Moorthy, V.; Jayakumar, T.; Raj, B. Influence of micro structure on acoustic emission behavior during stage 2 fatigue crack growth in solution annealed, thermally aged and weld specimens of AISI type 316 stainless steel. Mater. Sci. Eng. A 1996, 212, 273–280. [Google Scholar] [CrossRef]
- Shen, G.; Shen, Y.; Yuan, Y. Study of the acoustic emission characteristics of weld cracks in carbon steel pressure vessels. Insight-Non-Destr. Test. Cond. Monit. 2022, 64, 496–502. [Google Scholar] [CrossRef]
- Barat, V.; Marchenkov, A.; Bardakov, V.; Zhgut, D.; Karpova, M.; Balandin, T.; Elizarov, S. Assessment of the structural state of dissimilar welded joints by the acoustic emission method. Appl. Sci. 2022, 12, 7213. [Google Scholar] [CrossRef]
- Carrion-Viramontes, F.J.; Hernandez-Figueroa, J.A.; Machorro-Lopez, J.M.; Quintana-Rodriguez, J.A. Weld acoustic emission inspection of structural elements embedded in concrete. Sci. Prog. 2022, 105, 368504221075482. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, K.; Ma, Q.; Li, H.; Wang, P.; Chen, R.; Wang, P.; Chen, R.; Qian, Y.; Zeng, D. Study on acoustic emission properties and crack growth rate identification of rail steels under different fatigue loading conditions. Int. J. Fatigue 2023, 172, 107638. [Google Scholar] [CrossRef]
- Chai, M.; Lai, C.; Xu, W.; Duan, Q.; Zhang, Z.; Song, Y. Characterization of fatigue crack growth based on acoustic emission multi-parameter analysis. Materials 2022, 15, 6665. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; An, G.; Hao, L.; Wand, Z. Experimental Study on PLC Effect and Acoustic Emission Characteristics of Aluminum Alloy. Trans. Beijing Inst. Technol. 2019, 39, 999–1005. [Google Scholar] [CrossRef]
- Younis, H.B.; Kamal, K.; Sheikh, M.F.; Hamza, A. Prediction of fatigue crack growth rate in aircraft aluminum alloys using optimized neural networks. Theor. Appl. Fract. Mech. 2022, 117, 103196. [Google Scholar] [CrossRef]
- Baptista, R.; Moita, P.; Infante, V. Fatigue crack growth on modified CT specimens using artificial neural networks. Int. J. Fatigue 2023, 167, 107357. [Google Scholar] [CrossRef]
- Megid, W.A.; Chainey, M.; Lebrun, P.; Robert Hay, D. Monitoring fatigue cracks on eyebars of steel bridges using acoustic emission: A case study. Eng. Fract. Mech. 2019, 211, 198–208. [Google Scholar] [CrossRef]
- Megid, W.A.; Mejia, J.; Modwel, R.; Hay, D.R. Monitoring Welded Joints of Steel Pressure Vessels Using Acoustic Emission: Case Study. Trans. Indian Inst. Met. 2022, 75, 2199–2209. [Google Scholar] [CrossRef]
- Rivera, F.G.; Edwards, G.; Eren, E.; Soua, S. Acoustic emission technique to monitor crack growth in a mooring chain. Appl. Acoust. 2018, 139, 156–164. [Google Scholar] [CrossRef]
- Manuello Bertetto, A.; Masera, D.; Carpinteri, A. Acoustic emission monitoring of the turin cathedral bell tower: Foreshock and aftershock discrimination. Appl. Sci. 2020, 10, 3931. [Google Scholar] [CrossRef]
- Kundu, T.; Datta, A.K.; Topdar, P.; Sengupta, S. Optimal location of acoustic emission sensors for detecting rail damage. Proc. Inst. Civ. Eng.-Struct. Build. 2022, 177, 254–263. [Google Scholar] [CrossRef]
- Iziumova, A.Y.; Vshivkov, A.N.; Prokhorov, A.E.; Panteleev, I.A.; Mubassarova, V.A.; Plekhov, O.A.; Linderov, M.L.; Merson, D.L.; Vinogradov, A. Heat dissipation and acoustic emission features of titanium alloys in cyclic deformation mode. Acta Mech. 2021, 232, 1853–1861. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J.; Lou, B. Research on Kaiser effect of acoustic emission in concrete subjected to bending after freeze-thaw. J. Build. Eng. 2023, 78, 107713. [Google Scholar] [CrossRef]
- Saeedifar, M.; Zarouchas, D. Damage characterization of laminated composites using acoustic emission: A review. Compos. Part B Eng. 2020, 195, 108039. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, L.; Liu, Y.; Zhang, Z.; Matsui, T. Clustering analysis of acoustic emission signals in the monitoring of stone monuments: Case of the freeze–thaw deterioration of tuffs. Herit. Sci. 2023, 11, 1–20. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Gribov, A.; Unwin, A.R.; Horn, S. Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 2012, 33, 17–23. [Google Scholar] [CrossRef]
- Pascoe, J.A.; Zarouchas, D.S.; Alderliesten, R.C.; Benedictus, R. Using acoustic emission to understand fatigue crack growth within a single load cycle. Eng. Fract. Mech. 2018, 194, 281–300. [Google Scholar] [CrossRef]
- Chai, M.; Zhang, J.; Zhang, Z.; Duan, Q.; Cheng, G. Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds. Appl. Acoust. 2017, 126, 101–113. [Google Scholar] [CrossRef]
- ASTM Standard E647; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2004.
- Mostafapour, A.; Ghareaghaji, M.; Davoodi, S.; Ebrahimpour, A. Theoretical analysis of plate vibration due to acoustic signals. Appl. Acoust. 2016, 103, 82–89. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F. A critical analyses of crack propagation laws. J. Basic Eng. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Han, Q.; Yang, G.; Xu, J.; Fu, Z.; Lacidogna, G.; Carpinteri, A. Acoustic emission data analyses based on crumb rubber concrete beam bending tests. Eng. Fract. Mech. 2019, 210, 189–202. [Google Scholar] [CrossRef]
- Carvelli, V.; D’Ettorre, A.; Lomov, S.V. Acoustic emission and damage mode correlation in textile reinforced PPS composites. Compos. Struct. 2017, 163, 399–409. [Google Scholar] [CrossRef]
- Gutkin, R.; Green, C.J.; Vangrattanachai, S.; Pinho, S.T.; Robinson, P.; Curtis, P.T. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 2011, 25, 1393–1407. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Nguyen-Tat, T.; Ranaivomanana, N.; Balayssac, J.P. Characterization of damage in concrete beams under bending with Acoustic Emission Technique (AET). Constr. Build. Mater. 2018, 187, 487–500. [Google Scholar] [CrossRef]
- Kozak, K.; Dosi, A.; Bućko, M.M.; Chlubny, L.; Lis, J.; Antou, G.; Chotard, T. Investigation of the mechanical behavior of MAX phases by acoustic emission technique. Mater. Sci. Eng. A 2017, 707, 73–80. [Google Scholar] [CrossRef]
- Behnia, A.; Chai, H.K.; GhasemiGol, M.; Sepehrinezhad, A.; Mousa, A.A. Advanced damage detection technique by integration of unsupervised clustering into acoustic emission. Eng. Fract. Mech. 2019, 210, 212–227. [Google Scholar] [CrossRef]
- Ennaceur, C.; Laksimi, A.; Hervé, C.; Cherfaoui, M. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference. Int. J. Press. Vessel. Pip. 2006, 83, 197–204. [Google Scholar] [CrossRef]
- Han, Z.; Luo, H.; Sun, C.; Li, J.; Papaelias, M.; Davis, C. Acoustic emission study of fatigue crack propagation in extruded AZ31 magnesium alloy. Mater. Sci. Eng. A 2014, 597, 270–278. [Google Scholar] [CrossRef]
- Vanniamparambil, P.A.; Guclu, U.; Kontsos, A. Identification of Crack Initiation in Aluminum Alloys using Acoustic Emission. Exp. Mech. 2015, 55, 837–850. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Kordatos, E.Z.; Matikas, T.E. Acoustic emission for fatigue damage characterization in metal plates. Mech. Res. Commun. 2011, 38, 106–110. [Google Scholar] [CrossRef]
- Amer, A.O.; Gloanec, A.L.; Courtin, S.; Touze, C. Characterization of Fatigue Damage in 304L Steel by an Acoustic Emission Method. Procedia Eng. 2013, 66, 651–660. [Google Scholar] [CrossRef]
- RILEM Technical Committee (Masayasu Ohtsu). Recommendation of RILEM TC 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete*. Mater. Struct. 2010, 43, 1187–1189. [Google Scholar] [CrossRef]
- Chang, H.; Han, E.; Wang, J.; Ke, W. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ. Int. J. Fatigue 2009, 31, 403–407. [Google Scholar] [CrossRef]
- Zárate, B.A.; Caicedo, J.M.; Yu, J.; Ziehl, P. Probabilistic Prognosis of Fatigue Crack Growth Using Acoustic Emission Data. J. Constr. Steel Res. 2012, 138, 1101–1111. [Google Scholar] [CrossRef]
- Birenis, D.; Ogawa, Y.; Matsunaga, H.; Takakuwa, O.; Yamabe, J.; Prytz, Ø.; Thøgersen, A. Hydrogen-assisted crack propagation in α-iron during elasto-plastic fracture toughness tests. Mater. Sci. Eng. A 2019, 756, 396–404. [Google Scholar] [CrossRef]
Material | C | Mn | Si | S | P | Ni | Fe |
---|---|---|---|---|---|---|---|
wt. % | wt. % | wt. % | wt. % | wt. % | wt. % | wt. % | |
G20Mn5QT | 0.190 | 1.340 | 0.400 | 0.008 | 0.014 | 0.600 | Bal. |
ER50-6 | 0.077 | 1.450 | 0.870 | 0.013 | 0.012 | 0.010 | Bal. |
Transducer | R15α | Peak definite time | 300 (μs) |
Operating frequency | 50–200 (kHz) | Hit definite time | 600 (μs) |
Preamplifier gain | 40 (dB) | Hit lookout time | 1000 (μs) |
Threshold | 36 (dB) | Hit length | 4 (k) |
Compatible filter | 100–400 (kHz) | Sampling frequency | 3 (MHz) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Zhang, Z.; Lacidogna, G.; Xu, Y.; Xu, J. Fatigue Crack Growth Monitoring and Investigation on G20Mn5QT Cast Steel and Welds via Acoustic Emission. Appl. Sci. 2024, 14, 9612. https://doi.org/10.3390/app14209612
Liu Q, Zhang Z, Lacidogna G, Xu Y, Xu J. Fatigue Crack Growth Monitoring and Investigation on G20Mn5QT Cast Steel and Welds via Acoustic Emission. Applied Sciences. 2024; 14(20):9612. https://doi.org/10.3390/app14209612
Chicago/Turabian StyleLiu, Qingyang, Zhenli Zhang, Giuseppe Lacidogna, Yantao Xu, and Jie Xu. 2024. "Fatigue Crack Growth Monitoring and Investigation on G20Mn5QT Cast Steel and Welds via Acoustic Emission" Applied Sciences 14, no. 20: 9612. https://doi.org/10.3390/app14209612
APA StyleLiu, Q., Zhang, Z., Lacidogna, G., Xu, Y., & Xu, J. (2024). Fatigue Crack Growth Monitoring and Investigation on G20Mn5QT Cast Steel and Welds via Acoustic Emission. Applied Sciences, 14(20), 9612. https://doi.org/10.3390/app14209612