Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Thin Films
2.2. Investigation Techniques
3. Results and Discussion
3.1. Initial Stages of STO Film Growth
3.2. Structure Characterization of STO Films
3.3. Electrical Properties of STO Planar Capacitive Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vendik, O.G. Ferroelectrics Find Their “Niche” among Microwave Control Devices. Phys. Solid. State 2009, 51, 1529–1534. [Google Scholar] [CrossRef]
- Carlson, C.M.; Rivkin, T.V.; Parilla, P.A.; Perkins, J.D.; Ginley, D.S.; Kozyrev, A.B.; Oshadchy, V.N.; Pavlov, A.S. Large Dielectric Constant (ε/ε>;6000) Ba0.4Sr0.6TiO3 Thin Films for High-Performance Microwave Phase Shifters. Appl. Phys. Lett. 2000, 76, 1920–1922. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Yang, M.; Miao, J.; Lin, K.; Li, Q.; Chen, X.; Deng, J.; Xing, X. Ferroelectric Thin Films: Performance Modulation and Application. Mater. Adv. 2022, 3, 5735–5752. [Google Scholar] [CrossRef]
- Martin, L.W.; Rappe, A.M. Thin-Film Ferroelectric Materials and Their Applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef]
- Xu, Y. Ferroelectric Materials and Their Applications; Elsevier Science: Amsterdam, The Netherlands, 2013; ISBN 978-1-4832-9095-9. [Google Scholar]
- Tagantsev, A.K.; Sherman, V.O.; Astafiev, K.F.; Venkatesh, J.; Setter, N. Ferroelectric Materials for Microwave Tunable Applications. J. Electroceramics 2003, 11, 5–66. [Google Scholar] [CrossRef]
- Vendik, O.G.; Zubko, S.P.; Nikol’skii, M.A. Modeling and Calculation of the Capacitance of a Planar Capacitor Containing a Ferroelectric Thin Film. Tech. Phys. 1999, 44, 349–355. [Google Scholar] [CrossRef]
- Fernandez, A.; Acharya, M.; Lee, H.; Schimpf, J.; Jiang, Y.; Lou, D.; Tian, Z.; Martin, L.W. Thin-Film Ferroelectrics. Adv. Mater. 2022, 34, 2108841. [Google Scholar] [CrossRef]
- Borderon, C.; Ginestar, S.; Gundel, H.W.; Haskou, A.; Nadaud, K.; Renoud, R.; Sharaiha, A. Design and Development of a Tunable Ferroelectric Microwave Surface Mounted Device. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2020, 67, 1733–1737. [Google Scholar] [CrossRef]
- Abdulazhanov, S.; Le, Q.H.; Huynh, D.K.; Wang, D.; Lehninger, D.; Kämpfe, T.; Gerlach, G. THz Thin Film Varactor Based on Integrated Ferroelectric HfZrO2. ACS Appl. Electron. Mater. 2023, 5, 189–195. [Google Scholar] [CrossRef]
- Tumarkin, A.; Gagarin, A.; Zlygostov, M.; Sapego, E.; Altynnikov, A. Heterostructures “Ferroelectric Film/Silicon Carbide” for High Power Microwave Applications. Coatings 2020, 10, 247. [Google Scholar] [CrossRef]
- Zeinar, L.; Salg, P.; Walk, D.; Petzold, S.; Arzumanov, A.; Jakoby, R.; Maune, H.; Alff, L.; Komissinskiy, P. Matching Conflicting Oxidation Conditions and Strain Accommodation in Perovskite Epitaxial Thin-Film Ferroelectric Varactors. J. Appl. Phys. 2020, 128, 214104. [Google Scholar] [CrossRef]
- Bouca, P.; Pinho, R.; Wlodarkiewicz, A.; Tkach, A.; Matos, J.N.; Vilarinho, P.M.; De Carvalho, N.B. RF Phase Shifters Design Based on Barium Strontium Titanate Thick and Thin Films. In Proceedings of the 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM), Munich, Germany, 18–20 July 2022; IEEE: Munich, Germany, 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Dey, S.; Koul, S.K.; Poddar, A.K.; Rohde, U. RF MEMS Switches, Switching Networks and Phase Shifters for Microwave to Millimeter Wave Applications. ISSS J. Micro Smart Syst. 2020, 9, 33–47. [Google Scholar] [CrossRef]
- Razumov, S.V.; Tumarkin, A.V.; Gaidukov, M.M.; Gagarin, A.G.; Kozyrev, A.B.; Vendik, O.G.; Ivanov, A.V.; Buslov, O.U.; Keys, V.N.; Sengupta, L.C.; et al. Characterization of Quality of BaxSr1−xTiO3 Thin Film by the Commutation Quality Factor Measured at Microwaves. Appl. Phys. Lett. 2002, 81, 1675–1677. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, J.; Zhou, S.; Liu, Z.; Ming, N.; Lu, S.; Chan, H.L.-W.; Choy, C.-L. Recent Progress of (Ba,Sr)TiO3 Thin Films for Tunable Microwave Devices. J. Electron. Mater. 2003, 32, 1125–1134. [Google Scholar] [CrossRef]
- Kozyrev, A.; Keis, V.; Buslov, O.; Ivanov, A.; Soldatenkov, O.; Loginov, V.; Taricin, A.; Graul, J. Microwave Properties of Ferroelectric Film Planar Varactors. Integr. Ferroelectr. 2001, 34, 271–278. [Google Scholar] [CrossRef]
- Vendik, I.B.; Vendik, O.G.; Kollberg, E.L. Criterion for a Switching Device as a Basis of Microwave Switchable and Tunable Components. In Proceedings of the 1999 29th European Microwave Conference, Munich, Germany, 5–7 October 1999; IEEE: Munich, Germany, 1999; pp. 187–190. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N. Thickness-Dependent Strain Evolution of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition. Cryst. Res. Technol. 2018, 53, 1700211. [Google Scholar] [CrossRef]
- Müller, K.A.; Burkard, H. SrTiO3: An Intrinsic Quantum Paraelectric below 4 K. Phys. Rev. B 1979, 19, 3593–3602. [Google Scholar] [CrossRef]
- Mudhaffar, A.; Al-Jawhari, H. Impact of Deep Ultraviolet-Ozone Photoactivation on Dielectric Properties of Amorphous SrTiO3 Thin Films. KEM 2022, 907, 17–23. [Google Scholar] [CrossRef]
- Gueckelhorn, D.; Kersch, A.; Ruediger, A. Strain-Induced Enhancement of Surface Self-Diffusion on Strontium Titanate (001) Surfaces. J. Phys. Condens. Matter 2024, 36, 415002. [Google Scholar] [CrossRef]
- Janicki, T.D.; Liu, R.; Im, S.; Wan, Z.; Butun, S.; Lu, S.; Basit, N.; Voyles, P.M.; Evans, P.G.; Schmidt, J.R. Mechanisms of Three-Dimensional Solid-Phase Epitaxial Crystallization of Strontium Titanate. Cryst. Growth Des. 2024, 24, 7406–7414. [Google Scholar] [CrossRef]
- Hameed, S.; Pelc, D.; Anderson, Z.W.; Klein, A.; Spieker, R.J.; Yue, L.; Das, B.; Ramberger, J.; Lukas, M.; Liu, Y.; et al. Enhanced Superconductivity and Ferroelectric Quantum Criticality in Plastically Deformed Strontium Titanate. Nat. Mater. 2022, 21, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, H.; Yu, X.; Tang, S.; Wang, Y.; Fang, L.; Zhao, X.; Li, J.; Yang, L.; Dang, W. Nanostructured SrTiO3 with Different Morphologies Achieved by Mineral Acid-Assisted Hydrothermal Method with Enhanced Optical, Electrochemical, and Photocatalytic Performances. J. Mater. Sci. Mater. Electron. 2020, 31, 17736–17754. [Google Scholar] [CrossRef]
- Chang, W.; Kirchoefer, S.W.; Bellotti, J.A.; Qadri, S.B.; Pond, J.M.; Haeni, J.H.; Schlom, D.G. In-Plane Anisotropy in the Microwave Dielectric Properties of SrTiO3 Films. J. Appl. Phys. 2005, 98, 024107. [Google Scholar] [CrossRef]
- Biegalski, M.D.; Jia, Y.; Schlom, D.G.; Trolier-McKinstry, S.; Streiffer, S.K.; Sherman, V.; Uecker, R.; Reiche, P. Relaxor Ferroelectricity in Strained Epitaxial SrTiO3 Thin Films on DyScO3 Substrates. Appl. Phys. Lett. 2006, 88, 192907. [Google Scholar] [CrossRef]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.L.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-Temperature Ferroelectricity in Strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef]
- Liang, L.; Liu, W.; Yan, X.; Zhang, Y.; Li, Z.; Yao, H.; Wang, Z.; Hu, X.; Li, Y.; Wu, G.; et al. Hybrid Amorphous Strontium Titanate and Terahertz Metasurface for Ultra-Sensitive Temperature Sensing. Opt. Express 2024, 32, 22578. [Google Scholar] [CrossRef]
- Fareed, I.; Farooq, M.U.H.; Khan, M.D.; Ali, Z.; Butt, F.K. Band Gap Engineering of Strontium Titanate (SrTiO3) for Improved Photocatalytic Activity and Excellent Bio-Sensing Aptitude. Mater. Sci. Semicond. Process. 2024, 177, 108327. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Han, S.; Diao, C.; Lou, G. Effect of BFO Layer Position on Energy Storage Properties of STO/BFO Thin Films. J. Mater. Sci. Mater. Electron. 2022, 33, 24078–24088. [Google Scholar] [CrossRef]
- Caspi, S.; Baskin, M.; Shusterman, S.S.; Zhang, D.; Chen, A.; Cohen-Elias, D.; Sicron, N.; Katz, M.; Yalon, E.; Pryds, N.; et al. The Role of Interface Band Alignment in Epitaxial SrTiO 3 /GaAs Heterojunctions. ACS Appl. Electron. Mater. 2024, 6, 7235–7243. [Google Scholar] [CrossRef]
- Khan, M.A.; Braic, L.; AlSalik, Y.; Idriss, H. Growth of Epitaxial Strontium Titanate Films on Germanium Substrates Using Pulsed Laser Deposition. Appl. Surf. Sci. 2021, 542, 148601. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, Y.; Wu, B.; Wang, Y.; Yang, L.; Feng, Y.; Zou, M.; Geng, W.; Ma, X. Periodic Polarization Waves in a Strained, Highly Polar Ultrathin SrTiO3. Nano Lett. 2021, 21, 6274–6281. [Google Scholar] [CrossRef] [PubMed]
- Annam, R.S.; Danayat, S.; Nayal, A.; Tarannum, F.; Chrysler, M.; Ngai, J.; Jiang, J.; Schmidt, A.J.; Garg, J. Thickness Dependent Thermal Conductivity of Strontium Titanate Thin Films on Silicon Substrate. J. Vac. Sci. Technol. A 2024, 42, 022707. [Google Scholar] [CrossRef]
- Okhay, O.; Vilarinho, P.M.; Tkach, A. Low-Temperature Dielectric Response of Strontium Titanate Thin Films Manipulated by Zn Doping. Materials 2022, 15, 859. [Google Scholar] [CrossRef]
- Tumarkin, A.; Sapego, E.; Gagarin, A.; Bogdan, A.; Karamov, A.; Serenkov, I.; Sakharov, V. SrTiO3 Thin Films on Dielectric Substrates for Microwave Applications. Coatings 2023, 14, 3. [Google Scholar] [CrossRef]
- Kozyrev, A.; Ivanov, A.; Samoilova, T.; Soldatenkov, O.; Astafiev, K.; Sengupta, L.C. Nonlinear Response and Power Handling Capability of Ferroelectric BaxSr1−xTiO3 Film Capacitors and Tunable Microwave Devices. J. Appl. Phys. 2000, 88, 5334–5342. [Google Scholar] [CrossRef]
- Soldatenkov, O.; Samoilova, T.; Ivanov, A.; Kozyrev, A.; Ginley, D.; Kaydanova, T. Nonlinear Properties of Thin Ferroelectric Film-Based Capacitors at Elevated Microwave Power. Appl. Phys. Lett. 2006, 89, 232901. [Google Scholar] [CrossRef]
- Tumarkin, A.; Razumov, S.; Gagarin, A.; Altynnikov, A.; Mikhailov, A.; Platonov, R.; Kotelnikov, I.; Kozyrev, A.; Butler, J.E. Ferroelectric Varactor on Diamond for Elevated Power Microwave Applications. IEEE Electron. Device Lett. 2016, 37, 1. [Google Scholar] [CrossRef]
- Wang, X.; Helmersson, U.; Madsen, L.D.; Ivanov, I.P.; Münger, P.; Rudner, S.; Hjörvarsson, B.; Sundgren, J.-E. Composition, Structure, and Dielectric Tunability of Epitaxial SrTiO3 Thin Films Grown by Radio Frequency Magnetron Sputtering. J. Vac. Sci. Technol. A Vac. Surf. Film. 1999, 17, 564–570. [Google Scholar] [CrossRef]
- Loginov, V.E.; Tumarkin, A.V.; Sysa, M.V.; Buslov, O.U.; Gaidukov, M.M.; Ivanov, A.I.; Kozyrev, A.B. The Influence of Synthesis Temperature on Structure Properties of SrTiO3 Ferroelectric Films. Integr. Ferroelectr. 2001, 39, 375–381. [Google Scholar] [CrossRef]
- Slifka, A.J.; Filla, B.J.; Phelps, J.M. Thermal Conductivity of Magnesium Oxide from Absolute, Steady-State Measurements. J. Res. Natl. Inst. Stand. Technol. 1998, 103, 357. [Google Scholar] [CrossRef]
- Dörre, E.; Hübner, H. Alumina: Processing, Properties, and Applications. In Materials Research and Engineering; Springer: Berlin, Germany; New York, NY, USA, 1984; ISBN 978-0-387-13576-2. [Google Scholar]
- Levinštejn, M.E.; Rumyantsev, S.L.; Shur, M. Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. In A Wiley-Interscience Publication; Wiley: New York, NY, USA; Weinheim, Germany, 2001; ISBN 978-0-471-35827-5. [Google Scholar]
- Clarke, R.C.; Palmour, J.W. SiC Microwave Power Technologies. Proc. IEEE 2002, 90, 987–992. [Google Scholar] [CrossRef]
- Östling, M.; Koo, S.-M.; Zetterling, C.-M.; Khartsev, S.; Grishin, A. Ferroelectric Thin Films on Silicon Carbide for Next-Generation Nonvolatile Memory and Sensor Devices. Thin Solid. Films 2004, 469–470, 444–449. [Google Scholar] [CrossRef]
- Lee, J.S.; Jo, Y.-D.; Koh, J.-H.; Ha, J.-G.; Koo, S.-M. Crystalline and Electrical Properties of BST/4H-SiC Capacitors. J. Korean Phys. Soc. 2010, 57, 1889–1892. [Google Scholar] [CrossRef]
- Song, L.; Chen, Y.; Wang, G.; Yang, L.; Ge, J.; Dong, X.; Xiang, P.; Zhang, Y.; Tang, X. Fabrication and Dielectric Properties of Ba0.63Sr0.37TiO3 Thin Films on SiC Substrates. J. Am. Ceram. Soc. 2014, 97, 3048–3051. [Google Scholar] [CrossRef]
- Tumarkin, A.; Gagarin, A.; Odinets, A.; Zlygostov, M.; Sapego, E.; Kotelnikov, I. Structural and Microwave Characterization of BaSrTiO3 Thin Films Deposited on Semi-Insulating Silicon Carbide. Jpn. J. Appl. Phys. 2018, 57, 11UE02. [Google Scholar] [CrossRef]
- Koropov, A.V.; Ostapchuk, P.N.; Slezov, V.V. Diffusion-controlled growth of two-dimensional phases in ensembles. Sov. Phys. Solid. State 1991, 33, 1602–1607. [Google Scholar]
- Kukushkin, S.A.; Osipov, A.V. Nucleation and Growth Kinetics of Nanofilms. In Nucleation Theory and Applications; Schmelzer, J.W.P., Ed.; Wiley: New York, NY, USA; Weinheim, Germany, 2005; pp. 215–255. ISBN 978-3-527-40469-8. [Google Scholar]
- Tumarkin, A.V.; Zlygostov, M.V.; Serenkov, I.T.; Sakharov, V.I.; Afrosimov, V.V.; Odinets, A.A. Initial Stages of Growth of Barium Zirconate Titanate and Barium Stannate Titanate Films on Single-Crystal Sapphire and Silicon Carbide. Phys. Solid. State 2018, 60, 2091–2096. [Google Scholar] [CrossRef]
- Afrosimov, V.V.; Il’in, R.N.; Sakharov, V.I.; Serenkov, I.T.; Yanovskii, D.V.; Karmanenko, S.F.; Semenov, A.A. Study of YBa2Cu3O7−x Films at Various Stages of Their Growth by Medium-Energy Ion Scattering. Phys. Solid. State 1999, 41, 527–533. [Google Scholar] [CrossRef]
- Koebernik, G.; Haessler, W.; Pantou, R.; Weiss, F. Thickness Dependence on the Dielectric Properties of BaTiO3/SrTiO3-Multilayers. Thin Solid. Films 2004, 449, 80–85. [Google Scholar] [CrossRef]
- Niu, F.; Wessels, B.W. Surface and Interfacial Structure of Epitaxial SrTiO3 Thin Films on (001)Si Grown by Molecular Beam Epitaxy. J. Cryst. Growth 2007, 300, 509–518. [Google Scholar] [CrossRef]
- Kozyrev, A.B.; Soldatenkov, O.I.; Samoilova, T.B.; Ivanov, A.V.; Mueller, C.H.; Rivkin, T.V.; Koepf, G.A. Response Time and Power Handling Capability of Tunable Microwave Devices Using Ferroelectric Films. Integr. Ferroelectr. 1998, 22, 329–340. [Google Scholar] [CrossRef]
- Kozyrev, A.B.; Gaĭdukov, M.M.; Gagarin, A.G.; Altynnikov, A.G.; Razumov, S.V.; Tumarkin, A.V. Influence of Metal-Ferroelectric Contacts on the Space Charge Formation in Ferroelectric Thin Film Capacitors. Tech. Phys. Lett. 2009, 35, 585–588. [Google Scholar] [CrossRef]
- Kozyrev, A.B.; Soldatenkov, O.I.; Ivanov, A.V. Switching Time of Planar Ferroelectric Capacitors Using Strontium Titanate and Barium Strontium Titanate Films. Tech. Phys. Lett. 1998, 24, 755–757. [Google Scholar] [CrossRef]
Ts, °C; | P, Πa | Tunability, % | tgδ (U0) | tgδ (Umax) | CQF (2 GHz) |
---|---|---|---|---|---|
900 | 3 | 32.7 | 0.009 | 0.01 | 1725 |
6 | 33.4 | 0.012 | 0.0085 | 1684 | |
10 | 36 | 0.008 | 0.009 | 2565 | |
650 | 10 | 26.5 | 0.012 | 0.016 | 470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumarkin, A.; Sapego, E.; Bogdan, A.; Karamov, A.; Serenkov, I.; Sakharov, V. Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization. Appl. Sci. 2024, 14, 9672. https://doi.org/10.3390/app14219672
Tumarkin A, Sapego E, Bogdan A, Karamov A, Serenkov I, Sakharov V. Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization. Applied Sciences. 2024; 14(21):9672. https://doi.org/10.3390/app14219672
Chicago/Turabian StyleTumarkin, Andrei, Eugene Sapego, Alexey Bogdan, Artem Karamov, Igor Serenkov, and Vladimir Sakharov. 2024. "Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization" Applied Sciences 14, no. 21: 9672. https://doi.org/10.3390/app14219672
APA StyleTumarkin, A., Sapego, E., Bogdan, A., Karamov, A., Serenkov, I., & Sakharov, V. (2024). Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization. Applied Sciences, 14(21), 9672. https://doi.org/10.3390/app14219672