Sequential Memetic Algorithm Optimization for Allocation Planning in Hostelry Establishments
Abstract
:1. Introduction
2. Problem Description
2.1. Table Location Problem in Hostelry Applications
2.2. Maximum Dispersion Problem for Optimizing the Chair Allocation
3. Sequential Optimization
Algorithm 1: MA Structure for the TLP and the CLP Optimizations |
3.1. Table Distribution Optimization
Algorithm 2: Fitness function for the TLP MA () |
3.2. Chair Allocation Optimization
Algorithm 3: Pseudocode of the variable segmentation-designed crossover operator for the CLP optimization (Population, Num Chairs). |
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tyagi, M.; Bolia, N.B. Approaches for restaurant revenue management. J. Revenue Pricing Manag. 2021, 21, 17–35. [Google Scholar] [CrossRef]
- Thompson, G.M. Optimizing a restaurants seating capacity: Use dedicated or combinable tables? Cornell Hotel Restaur. Adm. Q. 2002, 43, 48–57. [Google Scholar] [CrossRef]
- Han, E.; Tan, M.M.J.; Turk, E.; Sridhar, D.; Leung, G.M.; Shibuya, K.; Asgari, N.; Oh, J.; García-Basteiro, A.L.; Hanefeld, J.; et al. Lessons learnt from easing COVID-19 restrictions: An analysis of countries and regions in Asia Pacific and Europe. Lancet 2020, 396, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, B.N.; Goodell, J.W. COVID-19 social distancing measures and economic growth: Distinguishing short-and long-term effects. Financ. Res. Lett. 2022, 47, 102639. [Google Scholar] [CrossRef] [PubMed]
- Pérez, V.; Aybar, C.; Pavía, J.M. COVID-19 and changes in social habits. Restaurant terraces, a booming space in cities. The case of Madrid. Mathematics 2021, 9, 2133. [Google Scholar] [CrossRef]
- Ugail, H.; Aggarwal, R.; Iglesias, A.; Howard, N.; Campuzano, A.; Suárez, P.; Maqsood, M.; Aadil, F.; Mehmood, I.; Gleghorn, S.; et al. Social distancing enhanced automated optimal design of physical spaces in the wake of the COVID-19 pandemic. Sustain. Cities Soc. 2021, 68, 102791. [Google Scholar] [CrossRef]
- Bañón, L.; Bañón, C. Improving Room Carrying Capacity within Built Environments in the Context of COVID-19. Symmetry 2020, 12, 1683. [Google Scholar] [CrossRef]
- Fischetti, M.; Pisinger, D. Mathematical optimization and algorithms for offshore wind farm design: An overview. Bus. Inf. Syst. Eng. 2019, 61, 469–485. [Google Scholar] [CrossRef]
- Díez-González, J.; Álvarez, R.; Sánchez-González, L.; Fernández-Robles, L.; Pérez, H.; Castejón-Limas, M. 3D Tdoa problem solution with four receiving nodes. Sensors 2019, 19, 2892. [Google Scholar] [CrossRef]
- Dhingra, S.; Morrow, J. Monopolistic competition and optimum product diversity under firm heterogeneity. J. Political Econ. 2019, 127, 196–232. [Google Scholar] [CrossRef]
- Lozano-Osorio, I.; Sanchez-Oro, J.; Lopez-Sanchez, A.D.; Duarte, A. A reactive path relinking algorithm for solving the bi-objective p-Median and p-Dispersion problem. Soft Comput. 2023, 27, 8029–8059. [Google Scholar] [CrossRef]
- Antipov, D.; Neumann, A.; Neumann, F. A Detailed Experimental Analysis of Evolutionary Diversity Optimization for OneMinMax. In Proceedings of the Genetic and Evolutionary Computation Conference, Melbourne, VIC, Australia, 14–18 July 2024; pp. 467–475. [Google Scholar]
- Ghosh, J.B. Computational aspects of the maximum diversity problem. Oper. Res. Lett. 1996, 19, 175–181. [Google Scholar] [CrossRef]
- Martí, R.; Gallego, M.; Duarte, A.; Pardo, E.G. Heuristics and metaheuristics for the maximum diversity problem. J. Heuristics 2013, 19, 591–615. [Google Scholar] [CrossRef]
- Ferrero-Guillén, R.; Díez-González, J.; Verde, P.; Álvarez, R.; Perez, H. Table Organization Optimization in Schools for Preserving the Social Distance During the COVID-19 Pandemic. Appl. Sci. 2020, 10, 8392. [Google Scholar] [CrossRef]
- Ferrero-Guillén, R.; Díez-González, J.; Martínez-Guitiérrez, A.; Álvarez, R. Optimal COVID-19 Adapted Table Disposition in Hostelry for Guaranteeing the Social Distance Through Memetic Algorithms. Appl. Sci. 2021, 11, 4957. [Google Scholar] [CrossRef]
- Ferrero-Guillén, R.; Díez-González, J.; Verde, P.; Martínez-Gutiérrez, A.; Alija-Pérez, J.M.; Perez, H. Memory Chains for Optimizing the Table Disposition During the COVID-19 Pandemic. In Proceedings of the International Conference on Bioengineering and Biomedical Signal and Image Processing, Meloneras, Gran Canaria, Spain, 19–21 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 472–483. [Google Scholar] [CrossRef]
- Thompson, G.M. Optimizing restaurant-table configurations: Specifying combinable tables. Cornell Hotel Restaur. Adm. Q. 2003, 44, 53–60. [Google Scholar] [CrossRef]
- Duan, Y.; Jia, D.; Jia, Y. Joint demand and capacity optimization in a service system. In Proceedings of the IEEE Conference Anthology, Chongqing, China, 1–8 January 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Fischetti, M.; Fischetti, M.; Stoustrup, J. Safe distancing in the time of COVID-19. Eur. J. Oper. Res. 2023, 304, 139–149. [Google Scholar] [CrossRef]
- Moliner, L.; Alegre, F. COVID-19 Restrictions and Its Influence on Students’ Mathematics Achievement in Spain. Educ. Sci. 2022, 12, 105. [Google Scholar] [CrossRef]
- Parreño, F.; Álvarez-Valdés, R.; Martí, R. Measuring diversity. A review and an empirical analysis. Eur. J. Oper. Res. 2021, 289, 515–532. [Google Scholar] [CrossRef]
- Martí, R.; Martínez-Gavara, A. Discrete Diversity and Dispersion Maximization; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Mahmoudinazlou, S.; Kwon, C. A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem. Comput. Oper. Res. 2024, 162, 106455. [Google Scholar] [CrossRef]
- Bui, H.T.; Spiers, S.; Loxton, R. Solving Euclidean Max-Sum problems exactly with cutting planes. Comput. Oper. Res. 2024, 168, 106682. [Google Scholar] [CrossRef]
- Katayama, K.; Narihisa, H. An Evolutionary Approach for the Maximum Diversity Problem; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Neri, F.; Cotta, C. Memetic algorithms and memetic computing optimization: A literature review. Swarm Evol. Comput. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Phan, Q.M.; Luong, N.H. Pareto Local Search is Competitive with Evolutionary Algorithms for Multi-Objective Neural Architecture Search. In Proceedings of the Genetic and Evolutionary Computation Conference, Lisbon, Portugal, 15–19 July 2023; pp. 348–356. [Google Scholar]
- Zhou, Y.; Kong, L.; Yan, L.; Liu, Y.; Wang, H. A memetic algorithm for a real-world dynamic pickup and delivery problem. Memetic Comput. 2024, 16, 203–217. [Google Scholar] [CrossRef]
- Papazoglou, G.; Biskas, P. Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies 2023, 16, 1152. [Google Scholar] [CrossRef]
- Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intell. 2024, 17, 1245–1256. [Google Scholar] [CrossRef]
- Ekinci, S.; Izci, D.; Abualigah, L.; Zitar, R.A. A modified oppositional chaotic local search strategy based aquila optimizer to design an effective controller for vehicle cruise control system. J. Bionic Eng. 2023, 20, 1828–1851. [Google Scholar] [CrossRef]
- D’Angelo, G.; Palmieri, F. GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems. Inf. Sci. 2021, 547, 136–162. [Google Scholar] [CrossRef]
- Verde, P.; Ferrero-Guillén, R.; Álvarez, R.; Díez-González, J.; Perez, H. Node Distribution Optimization in Positioning Sensor Networks through Memetic Algorithms in Urban Scenarios. Eng. Proc. 2020, 2, 73. [Google Scholar] [CrossRef]
- Verde, P.; Díez-González, J.; Ferrero-Guillén, R.; Martínez-Gutiérrez, A.; Perez, H. Memetic chains for improving the local wireless sensor networks localization in urban scenarios. Sensors 2021, 21, 2458. [Google Scholar] [CrossRef]
- Jiacheng, L.; Lei, L. A hybrid genetic algorithm based on information entropy and game theory. IEEE Access 2020, 8, 36602–36611. [Google Scholar] [CrossRef]
- Eremeev, A.V.; Kel’manov, A.V.; Kovalyov, M.Y.; Pyatkin, A.V. Maximum diversity problem with squared Euclidean distance. In Proceedings of the International Conference on Mathematical Optimization Theory and Operations Research, Ekaterinburg, Russia, 8–12 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 541–551. [Google Scholar] [CrossRef]
- Ferrero-Guillén, R.; Alija-Pérez, J.M.; Martínez-Gutiérrez, A.; Álvarez, R.; Verde, P.; Díez-González, J. Black widow optimization for reducing the target uncertainties in localization wireless sensor networks. Log. J. IGPL 2024, 2024, jzae032. [Google Scholar] [CrossRef]
- Nadeem, Z.; Javaid, N.; Malik, A.W.; Iqbal, S. Scheduling appliances with GA, TLBO, FA, OSR and their hybrids using chance constrained optimization for smart homes. Energies 2018, 11, 888. [Google Scholar] [CrossRef]
- Afshari, H.; Hare, W.; Tesfamariam, S. Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures. Appl. Soft Comput. 2019, 83, 105631. [Google Scholar] [CrossRef]
- Kouba, Z.; Lazansky, J.; Marik, V.; Vlcek, T.; Zenisek, P. Experiments with genetic algorithm in a CIM task. In Proceedings of the Twelfth European Meeting on Cybernetics and Systems Research, Vienna, Austria, 1 March 1994; Volume 2, pp. 1833–1840. [Google Scholar] [CrossRef]
- Shen, X. On the method of penalization. Stat. Sin. 1998, 8, 337–357. [Google Scholar]
- Schoenauer, M.; Xanthakis, S. Constrained GA optimization. In Proceedings of the 5th International Conference on Genetic Algorithms. Morgan Kaufmann, Urbana-Champaign, IL, USA, 17–21 June 1993; pp. 573–580. [Google Scholar]
- Hamamoto, S. Development and validation of genetic algorithm-based facility layout a case study in the pharmaceutical industry. Int. J. Prod. Res. 1999, 37, 749–768. [Google Scholar] [CrossRef]
- Salhi, S.; Petch, R. A GA based heuristic for the vehicle routing problem with multiple trips. J. Math. Model. Alg. 2007, 6, 591–613. [Google Scholar] [CrossRef]
- Zhigljavsky, A. Theory of Global Random Search; Pinter, J., Ed.; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 1991; Volume 65. [Google Scholar] [CrossRef]
- Zainuddin, F.A.; Abd Samad, M.F.; Tunggal, D. A review of crossover methods and problem representation of genetic algorithm in recent engineering applications. Int. J. Adv. Sci. Technol. 2020, 29, 759–769. [Google Scholar]
- Kuo, C.C.; Glover, F.; Dhir, K.S. Analyzing and modeling the maximum diversity problem by zero-one programming. Decis. Sci. 1993, 24, 1171–1185. [Google Scholar] [CrossRef]
- Borenstein, Y.; Poli, R. Fitness distributions and GA hardness. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Birmingham, UK, 18–22 September 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 11–20. [Google Scholar] [CrossRef]
- Ferrero-Guillén, R.; Díez-González, J.; Álvarez, R.; Pérez, H. Analysis of the genetic algorithm operators for the node location problem in local positioning systems. In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, Gijón, Spain, 11–13 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 273–283. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of Individuals | 300 |
Stop Criteria | 300 Generations or
90% Population Equal |
Number of Points | 16,384 |
Number of Possible Solutions *1 | |
Elitism Percentage | 15% |
Selection Technique | Tournament 3 |
Crossover Technique | Multi-Point 3 |
Mutation Percentage | 12% Population 12% Genotype |
, | 1.5 and 0.3 m |
, Z | 2.5, 100 |
Table Dimensions | 1.9 × 0.9 m |
1, 0.5, 1.5 | |
*2, | , 14, 2 |
*3 | 300, [0, 6] |
[1.5, 1.3, 1.25], 2 | |
1 per 15 generations | |
20 | |
8, 10 |
Parameter | Value |
---|---|
Number of Individuals | 400 |
Stop Criteria | 400 Generations or 90% Population Equal |
Number of Points | 2500 |
Number of Possible Solutions *1 | |
Elitism Percentage | 15% |
Selection Technique | Tournament 3 |
Crossover Technique | Variable Segmentation |
Mutation Percentage | 15% Population 20% Genotype |
1 m, 50 bits | |
10, 5, 1 | |
[1.5, 1.3, 1.25], 2 | |
1 per 10 generations | |
30 | |
300, 90 | |
15, 1.5, 2 | |
[0, 4] |
Strategy | Mean Dist | Min Dist | Standard Deviation |
---|---|---|---|
Max-mean | 2.72 m | 0.05 m | 1.14 m |
Min-max | 2.49 m | 1.08 m | 1.01 m |
Max-sum | 2.39 m | 0.02 m | 1.26 m |
Mix | 2.53 m | 1.08 m | 1.01 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrero-Guillén, R.; Martínez-Gutiérrez, A.; Álvarez, R.; Díez-González, J. Sequential Memetic Algorithm Optimization for Allocation Planning in Hostelry Establishments. Appl. Sci. 2024, 14, 9698. https://doi.org/10.3390/app14219698
Ferrero-Guillén R, Martínez-Gutiérrez A, Álvarez R, Díez-González J. Sequential Memetic Algorithm Optimization for Allocation Planning in Hostelry Establishments. Applied Sciences. 2024; 14(21):9698. https://doi.org/10.3390/app14219698
Chicago/Turabian StyleFerrero-Guillén, Rubén, Alberto Martínez-Gutiérrez, Rubén Álvarez, and Javier Díez-González. 2024. "Sequential Memetic Algorithm Optimization for Allocation Planning in Hostelry Establishments" Applied Sciences 14, no. 21: 9698. https://doi.org/10.3390/app14219698
APA StyleFerrero-Guillén, R., Martínez-Gutiérrez, A., Álvarez, R., & Díez-González, J. (2024). Sequential Memetic Algorithm Optimization for Allocation Planning in Hostelry Establishments. Applied Sciences, 14(21), 9698. https://doi.org/10.3390/app14219698