Biomass and Phenolic Acid Accumulation in Salvia austriaca Hairy Roots Grown in Temporary Immersion and Mist-Trickling Bioreactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Bioreactor Studies
2.3. Phytochemical Analysis
2.4. Quantitative Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Identification of Polyphenolic Compounds in Hydromethanolic Extract of Salvia austriaca Hairy Roots
3.2. Effect of Cultivation Environment on Biomass and Phenolic Acid Production in S. austriaca Hairy Roots
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Foo, L.Y. Polyphenolics of Salvia-a Review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Akin, M.; Demirci, B.; Bagci, Y.; Baser, K.H.C. Antibacterial activity and composition of the essential oils of two endemic Salvia sp. from Turkey. Afr. J. Biotechnol. 2010, 9, 2322–2327. [Google Scholar]
- Ulubelen, A. Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry 2003, 64, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Veličković, D.T.; Ristić, M.S.; Milosavljević, N.P.; Karabegović, I.T.; Stojičević, S.S.; Lazić, M.L. Chemical composition of the essential oils of Salvia austriaca Jacq. and Salvia amplexicaulis Lam. from Serbia. Agro Food Ind. Hi Tech 2012, 3, 8–10. [Google Scholar]
- Nagy, G.; Günther, G.; Máthé, I.; Blunden, G.; Yang, M.; Crabb, T.A. Diterpenoids from Salvia glutinosa, S. austriaca, S. tomentosa and S. verticillata roots. Phytochemistry 1999, 52, 1105–1109. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Kisiel, W.; Królicka, A.; Wysokińska, H. Genetic transformation of Salvia austriaca by Agrobacterium rhizogenes and diterpenoid isolation. Pharmazie 2011, 66, 904–907. [Google Scholar]
- Janicsák, G.; Veres, K.; Kakasy, A.Z.; Máthé, I. Study of the oleanolic and ursolic acid contents of some species of the Lamiaceae. Biochem. Syst. Ecol. 2006, 34, 392–396. [Google Scholar] [CrossRef]
- Luca, S.V.; Skalicka-Woźniak, K.; Mihai, C.; Gradinaru, A.C.; Mandici, A.; Ciocarlan, N.; Miron, A.; Aprotosoaie, A.C. Chemical profile and bioactivity evaluation of Salvia species from eastern Europe. Antioxidants 2023, 12, 1514. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Murthy, H.N.; Joseph, K.S.; Paek, K.Y.; Park, S.Y. Bioreactor systems for micropropagation of plants: Present scenario and future prospects. Front. Plant Sci. 2023, 14, 1159588. [Google Scholar] [CrossRef]
- Schenk, R.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food Funct. 2016, 7, 2223–2232. [Google Scholar] [CrossRef]
- Hanganu, D.; Olah, N.-K.; Pop, C.E.; Vlase, L.; Oniga, I.; Ciocarlan, N.; Matei, A.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Benedec, D. Evaluation of polyphenolic profile and antioxidant activity for some Salvia species. Farmacia 2019, 67, 5801–5805. [Google Scholar] [CrossRef]
- Açikgöz, M.A.; Kara, S.M.; Ay, E.B.; Odabaş, S. Effect of light on biosynthesis of alkamide, caffeic acid derivatives and echinacoside in Echinacea purpurea L. callus cultures. Akad. Ziraat Derg. 2018, 7, 179–184. [Google Scholar] [CrossRef]
- Tambe, N.M. Studies on in vitro callus culture of Solanum khasianum Clarke. Int. J. Recent Trends Sci. Technol. 2013, 5, 111–112. [Google Scholar]
- Barrera, K.; González-Cortazar, M.; Reyes-Pérez, R.; Pérez-García, D.; Herrera-Ruiz, M.; Arellano-García, J.; Cruz-Sosa, F.; Nicasio-Torres, P. Production of two isomers of sphaeralcic acid in hairy roots from Sphaeralcea angustifolia. Plants 2023, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
- Kuźma, Ł.; Kaiser, M.; Wysokińska, H. The production and antiprotozoal activity of abietane diterpenes in Salvia austriaca hairy roots grown in shake flasks and bioreactor. Prep. Biochem. Biotechnol. 2016, 47, 58–66. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Bruchajzer, E.; Wysokińska, H. Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb. Technol. 2009, 44, 406–410. [Google Scholar] [CrossRef]
- Urbańska, N.; Giebułtowicz, J.; Olszowska, O.; Szypuła, W.J. The growth and saponin production of Platycodon grandiflorum (Jacq.) A. DC. (Chinese bellflower) hairy roots cultures maintained in shake flasks and mist bioreactor. Acta Soc. Bot. Pol. 2014, 83, 229–237. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Picot, L.; Michalska-Hejduk, D.; Bijak, M.; Białas, A.J.; Wielanek, M.; Śliwiński, T.; Skała, E. Growth of Leonurus sibiricus L. roots with over-expression of AtPAP1 transcriptional factor in closed bioreactor, production of bioactive phenolic compounds and evaluation of their biological activity. Ind. Crop. Prod. 2018, 122, 732–739. [Google Scholar] [CrossRef]
- Towler, M.J.; Kim, Y.; Wyslouzil, B.E.; Correll, M.J.; Weathers, P.J. Design, development, and applications of mist bioreactors for micropropagation and hairy root culture. In Plant Tissue Culture Engineering. Focus on Biotechnology; Gupta, S.D., Ibaraki, Y., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 6, pp. 119–134. [Google Scholar]
- Georgiev, V.; Stukert, A.; Bley, T.; Pavlov, A. Hyosciamine biosynthesis by diploid and tetraploid Datura stramonium L. hairy root cultures in a temporary immersion cultivation system. Adv. Bulg. Sci. 2008, 2, 42–47. [Google Scholar]
- Kentsop, R.A.D.; Iobbi, V.; Donadio, G.; Ruffoni, B.; De Tommasi, N.; Bisio, A. Abietane diterpenoids from the hairy roots of Salvia corrugata. Molecules 2021, 26, 5144. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Compound | Retention Time (min) | λmax (nm) | Negative Ion Mode | |
---|---|---|---|---|---|
[M-H]− | Major Fragments MS2 | ||||
1 | Caffeic acid | 16.0 | 323 | 179 | 135 |
2 | Rosmarinic acid | 30.1 | 327 | 359 | 197, 179, 161 |
3 | Salvianolic acid A | 30.7 | 312 | 493 | 359 |
Liquid Medium | Growth Environment | FW (g/L) | DW (g/L) | Gi |
---|---|---|---|---|
SH | Flask | 149.29 | 9.72 | 35.19 |
Plantform bioreactor | 45.89 | 2.85 | 3.25 | |
Mist-trickling bioreactor | 155.43 | 10.16 | 13.66 |
Selected Descriptive Statistics of the Analyzed Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|
Caffeic Acid (n = 25) | Rosmarinic Acid (n = 25) | Salvianolic Acid A (n = 25) | |||||||
F | Ptf | M-t | F | Ptf | M-t | F | Ptf | M-t | |
Average | 1.73 | 0.47 | 2.37 | 4.38 | 25.52 | 158.74 | 1.91 | 1.31 | 4.18 |
Median | 1.70 | 0.49 | 2.36 | 4.60 | 24.57 | 156.83 | 1.87 | 1.26 | 4.06 |
Standard error | 0.03 | 0.01 | 0.07 | 0.26 | 0.56 | 2.98 | 0.07 | 0.03 | 0.11 |
Minimum | 1.56 | 0.41 | 1.94 | 0.20 | 22.15 | 132.62 | 0.57 | 1.06 | 3.41 |
Maximum | 2.04 | 0.51 | 3.00 | 5.86 | 30.98 | 175.50 | 2.61 | 1.68 | 5.03 |
Lower quartile | 1.65 | 0.45 | 2.04 | 4.38 | 23.48 | 148.20 | 1.78 | 1.24 | 3.76 |
Upper quartile | 1.79 | 0.50 | 2.56 | 4.77 | 26.47 | 172.67 | 2.08 | 1.42 | 4.69 |
Interquartile range | 0.14 | 0.05 | 0.52 | 0.39 | 2.99 | 24.47 | 0.30 | 0.18 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźma, Ł.; Kiss, A.K.; Pieszyński, I.; Mojsiejew, D.; Pękala, J.; Nowak, J. Biomass and Phenolic Acid Accumulation in Salvia austriaca Hairy Roots Grown in Temporary Immersion and Mist-Trickling Bioreactors. Appl. Sci. 2024, 14, 9827. https://doi.org/10.3390/app14219827
Kuźma Ł, Kiss AK, Pieszyński I, Mojsiejew D, Pękala J, Nowak J. Biomass and Phenolic Acid Accumulation in Salvia austriaca Hairy Roots Grown in Temporary Immersion and Mist-Trickling Bioreactors. Applied Sciences. 2024; 14(21):9827. https://doi.org/10.3390/app14219827
Chicago/Turabian StyleKuźma, Łukasz, Anna Karolina Kiss, Ireneusz Pieszyński, Dymitr Mojsiejew, Justyna Pękala, and Jadwiga Nowak. 2024. "Biomass and Phenolic Acid Accumulation in Salvia austriaca Hairy Roots Grown in Temporary Immersion and Mist-Trickling Bioreactors" Applied Sciences 14, no. 21: 9827. https://doi.org/10.3390/app14219827
APA StyleKuźma, Ł., Kiss, A. K., Pieszyński, I., Mojsiejew, D., Pękala, J., & Nowak, J. (2024). Biomass and Phenolic Acid Accumulation in Salvia austriaca Hairy Roots Grown in Temporary Immersion and Mist-Trickling Bioreactors. Applied Sciences, 14(21), 9827. https://doi.org/10.3390/app14219827