Effects of Toe-Strengthening Exercises on Medial Longitudinal Arch Height, Muscle Stiffness, and Functional Movement
Abstract
:1. Introduction
- Cadets living in combat boots will have a difference in the height of the medial longitudinal arch and an imbalance in the lower extremities.
- Toe exercises will alleviate the height and muscle tension of the medial longitudinal arch, causing positive changes in improving the lower extremity imbalance.
2. Materials and Methods
2.1. Participation
2.2. Toe-Strengthening Exercise Program
2.3. Medial Longitudinal Arch (MLA) Height Measurement
2.4. Lower-Extremity Muscle Stiffness
2.5. Functional Movement Screen (FMS) Measurement
2.6. Leg Length Measurement
2.7. Statistical Analysis
3. Results
3.1. Results of the Medial Longitudinal Arch (MLA) Height Measurement
3.2. Results of the Lower-Extremity Soft Tissue Stiffness Measurement
3.3. Results of the FMS and Leg Length Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Standring, S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 42nd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Zhao, X.; Tsujimoto, T.; Kim, B.; Tanaka, K. Association of arch height with ankle muscle strength and physical performance in adult men. Biol. Sport 2017, 34, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.; Bordoni, B. Anatomy, Bony Pelvis and Lower Limb: Medial Longitudinal Arch of the Foot. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Hearn, D.; Rhon, D.; Goss, D.; Thelen, M. Evaluation of a novel field expedient musculoskeletal readiness screening tool in an Army Basic Training population. Mil. Med. 2017, 182, e1862–e1868. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, V.D.; Barnes, S.; Hauret, K.; Lee, T.; Forrest, L.; Jones, B.H. The Etiology of Injuries in US Army Initial Entry Training. US Army Med. Dep. J. 2018, 22, 22–29. [Google Scholar]
- Chiou, S.S.; Turner, N.; Zwiener, J.; Weaver, D.L.; Haskell, W.E. Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles. Hum. Factors 2012, 54, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Mei-Dan, O.; Kahn, G.; Zeev, A.; Rubin, A.; Constantini, N.; Even, A.; Nyska, M.; Mann, G. The medial longitudinal arch as a possible risk factor for ankle sprains: A prospective study in 83 female infantry recruits. Foot Ankle Int. 2005, 26, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Okamura, K.; Kanai, S.; Oki, S.; Tanaka, S.; Hirata, N.; Sakamura, Y.; Idemoto, N.; Wada, H.; Otsuka, A. Does the weakening of intrinsic foot muscles cause the decrease of medial longitudinal arch height? J. Phys. Ther. Sci. 2017, 29, 1001–1005. [Google Scholar] [CrossRef]
- Kirby, K.A. Longitudinal arch load-sharing system of the foot. Rev. Esp. Podol. 2017, 28, e18–e26. [Google Scholar] [CrossRef]
- Mulligan, E.P.; Cook, P.G. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man. Ther. 2013, 18, 425–430. [Google Scholar] [CrossRef]
- Fraser, J.J.; Hertel, J. Effects of a 4-week intrinsic foot muscle exercise program on motor function: A preliminary randomized control trial. J. Sport Rehabil. 2019, 28, 339–349. [Google Scholar] [CrossRef]
- Woerman, A.L.; Binder-Macleod, S.A. Leg length discrepancy assessment: Accuracy and precision in five clinical methods of evaluation. J. Orthop. Sports Phys. Ther. 1984, 5, 230–239. [Google Scholar] [CrossRef]
- Orner, S.; Kratzer, W.; Schmidberger, J.; Grüner, B. Quantitative tissue parameters of Achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer. J. Bodyw. Mov. Ther. 2018, 22, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.M. Techniques in the evaluation and treatment of the injured runner. Orthop. Clin. N. Am. 1982, 13, 541–558. [Google Scholar] [CrossRef]
- Allen, M.K.; Glasoe, W.M. Metrecom measurement of navicular drop in subjects with anterior cruciate ligament injury. J. Athl. Train. 2000, 35, 403–406. [Google Scholar] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function. N. Am. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar]
- Haun, C.; Brown, C.N.; Hannigan, K.; Johnson, S.T. The effects of the short foot exercise on Navicular Drop: A critically appraised topic. J. Sport Rehabil. 2020, 30, 152–157. [Google Scholar] [CrossRef]
- McKeon, P.O.; Fourchet, F. Freeing the foot: Integrating the foot core system into rehabilitation for lower extremity injuries. Clin. Sports Med. 2015, 34, 347–361. [Google Scholar] [CrossRef]
- McKeon, P.O.; Hertel, J.; Bramble, D.; Davis, I. The foot core system: A new paradigm for understanding intrinsic foot muscle function. Br. J. Sports Med. 2015, 49, 290. [Google Scholar] [CrossRef]
- Headlee, D.L.; Leonard, J.L.; Hart, J.M.; Ingersoll, C.D.; Hertel, J. Fatigue of the plantar intrinsic foot muscles increases navicular drop. J. Electromyogr. Kinesiol. 2008, 18, 420–425. [Google Scholar] [CrossRef]
- Kelly, L.A.; Cresswell, A.G.; Racinais, S.; Whiteley, R.; Lichtwark, G. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. J. R. Soc. Interface 2014, 11, 20131188. [Google Scholar] [CrossRef]
- Hara, S.; Kitano, M.; Kudo, S. The effects of short foot exercises to treat flat foot deformity: A systematic review. J. Back Musculoskelet. Rehabil. 2023, 36, 21–33. [Google Scholar] [CrossRef]
- Park, D.J.; Lee, K.S.; Park, S.Y. Effects of two foot-ankle interventions on foot structure, function, and balance ability in obese people with pes planus. Healthcare 2021, 9, 667. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.; Knutzen, K.M. Biomechanical Basis of Human Movement; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Lloyd, R.S.; Kushner, A.; Myer, G.D. Integrative neuromuscular training in youth athletes. Part II: Strategies to prevent injuries and improve performance. Strength Cond. J. 2016, 38, 9–27. [Google Scholar] [CrossRef]
- Nordez, A.; Gross, R.; Andrade, R.; Le Sant, G.; Freitas, S.; Ellis, R.; McNair, P.J.; Hug, F. Non-muscular structures can limit the maximal joint range of motion during stretching. Sports Med. 2017, 47, 1925–1929. [Google Scholar] [CrossRef] [PubMed]
- Tondon, A.; Kaunas, R. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS ONE 2014, 9, e89592. [Google Scholar] [CrossRef]
- Lee, E.; Cho, J.; Lee, S. Short-foot exercise promotes quantitative somatosensory function in ankle instability: A randomized controlled trial. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 618. [Google Scholar] [CrossRef]
- Sulowska-Daszyk, I.; Mika, A.; Oleksy, Ł. Impact of short foot muscle exercises on quality of movement and flexibility in amateur runners. Int. J. Environ. Res. Public Health 2020, 17, 6534. [Google Scholar] [CrossRef]
- Riddick, R.; Farris, D.J.; Kelly, L.A. The foot is more than a spring: Human foot muscles perform work to adapt to the energetic requirements of locomotion. J. R. Soc. Interface 2019, 16, 20180680. [Google Scholar] [CrossRef]
- Kim, E.K.; Kim, J.S. The effects of short foot exercises and arch support insoles on improvement in the medial longitudinal arch and dynamic balance of flexible flatfoot patients. J. Phys. Ther. Sci. 2016, 28, 3136–3139. [Google Scholar] [CrossRef]
- Jeong, D.H.; Lee, D.R.; Lee, K.L.; Sung, J.Y. Gravitational acceleration test results according to functional movement screen and morphological symmetry results of air force cadets. Symmetry 2023, 15, 804. [Google Scholar] [CrossRef]
- Sung, J.Y.; Jeong, D.H.; Lee, K.L. Analysis of the relationship between body imbalance characteristics and physical ability in air force cadets: Physical function and gravity acceleration resistance. Sci. Rep. 2024, 14, 19795. [Google Scholar] [CrossRef]
- Matsumoto, S.; Fujita, D.; Osaka, H. Intrinsic Foot Muscle Training Affects Plantar Pressure Distribution during A Single-group Clinical Trial. Kawasaki J. Med. Welf. 2019, 24, 71–76. [Google Scholar]
Variable | Ex (n = 20) | Con (n = 20) | t | p |
---|---|---|---|---|
Height (cm) | 173.26 ± 4.25 | 174.18 ± 4.47 | −0.663 | 0.988 |
Weight (kg) | 71.21 ± 7.36 | 69.92 ± 8.87 | 0.498 | 0.797 |
Skeletal muscle mass (kg) | 33.75 ± 3.75 | 34.00 ± 4.14 | −0.204 | 0.809 |
Fat mass (kg) | 11.87 ± 2.67 | 10.27 ± 3.69 | 1.569 | 0.509 |
Body fat (%) | 16.61 ± 2.88 | 14.50 ± 4.25 | 1.839 | 0.281 |
Body mass index (kg/m2) | 23.70 ± 2.05 | 23.02 ± 2.57 | 0.916 | 0.376 |
Variable | Group | Pre | Post | Group and Time | F | p |
---|---|---|---|---|---|---|
NWL | EX (n = 20) | 54.80 ± 4.11 | 57.05 ± 3.36 | G: | 0.037 | 0.848 |
T: | 0.817 | 0.369 | ||||
CON (n = 20) | 55.05 ± 4.67 | 55.45 ± 4.07 | G × T | 2.438 | 0.123 | |
NWR | EX (n = 20) | 54.95 ± 3.81 | 57.30.3.31 | G: | 0.063 | 0.803 |
T: | 1.713 | 0.194 | ||||
CON (n = 20) | 55.90 ± 4.59 | 55.91 ± 4.21 | G × T | 1.713 | 0.194 | |
WL | EX (n = 20) | 49.90 ± 3.16 | 51.40 ± 3.56 | G: | 2.482 | 0.119 |
T: | 0.600 | 0.441 | ||||
CON (n = 20) | 49.20 ± 4.89 | 49.15 ± 4.84 | G × T | 0.685 | 0.410 | |
WR | EX (n = 20) | 49.85 ± 2.94 | 51.40 ± 3.80 | G: | 1.990 | 0.162 |
T: | 1.063 | 0.306 | ||||
CON (n = 20) | 49.15 ± 4.88 | 49.50 ± 4.58 | G × T | 0.424 | 0.517 |
Variable (Stiffness, N/m) | Group | PRE | POST | Group and Time | F | p |
---|---|---|---|---|---|---|
Tibialis Anterior (Left) | EX (n = 20) | 545.50 ± 47.24 | 493.85 ± 46.48 | G | 0.001 | 0.978 |
T | 3.795 | 0.055 | ||||
CON (n = 20) | 515.75 ± 47.63 | 524.20 ± 56.33 | G × T ## | 7.345 | 0.008 | |
Tibialis Anterior (Right) | EX (n = 20) | 539.60 ± 48.07 | 485.90 ± 45.55 | G | 2.854 | 0.095 |
T ** | 6.183 | 0.015 | ||||
CON (n = 20) | 533.30 ± 47.30 | 530.55 ± 60.69 | G × T # | 5.037 | 0.028 | |
Fibularis Longus (Left) | EX (n = 20) | 483.05 ± 50.40 | 449.01 ± 47.54 | G | 1.799 | 0.184 |
T | 3.213 | 0.077 | ||||
CON (n = 20) | 454.11 ± 44.45 | 447.87 ± 58.58 | G × T | 1.492 | 0.226 | |
Fibularis Longus (Right) | EX (n = 20) | 481.50 ± 63.73 | 436.55 ± 61.99 | G | 0.834 | 0.364 |
T | 2.553 | 0.114 | ||||
CON (n = 20) | 445.70 ± 55.57 | 447.95 ± 55.75 | G × T | 3.119 | 0.081 | |
Gastrocnemius (Left) | EX (n = 20) | 332.25 ± 45.55 | 303.45 ± 41.74 | G | 1.277 | 0.262 |
T | 2.737 | 0.102 | ||||
CON (n = 20) | 330.55 ± 41.9 | 327.15 ± 45.42 | G × T | 1.703 | 0.196 | |
Gastrocnemius (Right) | EX (n = 20) | 343.85 ± 36.47 | 313.65 ± 36.97 | G | 0.039 | 0.844 |
T | 2.176 | 0.144 | ||||
CON (n = 20) | 325.30 ± 45.50 | 328.60 ± 43.36 | G × T | 3.376 | 0.070 | |
Achilles Tendon (Left) | EX (n = 20) | 627.85 ± 77.47 | 613.75 ± 68.02 | G | 0.001 | 0.979 |
T | 0.873 | 0.353 | ||||
CON (n = 20) | 628.45 ± 73.64 | 612.37 ± 71.43 | G × T | 0.004 | 0.950 | |
Achilles Tendon (Right) | EX (n = 20) | 628.41 ± 66.74 | 591.60 ± 59.07 | G | 1.980 | 0.164 |
T | 2.409 | 0.125 | ||||
CON (n = 20) | 635.45 ± 73.11 | 626.25 ± 65.40 | G × T | 0.867 | 0.355 | |
plantar Fascia (Left) | EX (n = 20) | 487.30 ± 44.88 | 457.31 ± 38.47 | G +++ | 10.969 | 0.001 |
T | 0.001 | 0.973 | ||||
CON (n = 20) | 489.90 ± 45.10 | 519.25 ± 45.56 | G × T ## | 9.273 | 0.003 | |
plantar Fascia (Right) | EX (n = 20) | 486.25 ± 51.33 | 459.35 ± 44.51 | G+ | 5.735 | 0.019 |
T | 0.112 | 0.738 | ||||
CON (n = 20) | 481.30 ± 46.02 | 515.35 ± 48.72 | G × T ## | 8.175 | 0.005 |
Variable | Group | PRE | POST | Group and Time | F | p |
---|---|---|---|---|---|---|
Deep Squat | EX (n = 20) | 1.80 ± 0.83 | 2.10 ± 0.64 | G | 1.201 | 0.277 |
T * | 4.143 | 0.045 | ||||
CON (n = 20) | 1.95 ± 0.75 | 1.60 ± 0.59 | G × T | 0.025 | 0.876 | |
Hurdle Step | EX (n = 20) | 1.00 ± 0.001 | 1.60 ± 0.59 | G ++ | 6.946 | 0.010 |
T ** | 9.701 | 0.003 | ||||
CON (n = 20) | 1.55 ± 0.51 | 1.60 ± 0.50 | G × T ## | 6.946 | 0.010 | |
Inline Lunge | EX (n = 20) | 1.10 ± 0.31 | 1.50 ± 0.51 | G | 1.652 | 0.203 |
T | 2.937 | 0.091 | ||||
CON (n = 20) | 1.45 ± 0.60 | 1.45 ± 0.60 | G × T | 2.937 | 0.091 | |
Shoulder Mobility | EX (n = 20) | 1.80 ± 0.69 | 1.95 ± 0.60 | G | 11.700 | 0.001 |
T | 1.547 | 0.217 | ||||
CON (n = 20) | 2.30 ± 0.86 | 2.55 ± 0.68 | G × T | 0.097 | 0.757 | |
Active Straight Leg Raise | EX (n = 20) | 1.50 ± 0.83 | 2.15 ± 0.67 | G + | 5.592 | 0.021 |
T ** | 7.303 | 0.008 | ||||
CON (n = 20) | 1.40 ± 0.50 | 1.55 ± 0.60 | G × T | 2.853 | 0.095 | |
Trunk Stability Push-Up | EX (n = 20) | 1.40 ± 0.50 | 1.65 ± 0.58 | G | 16.334 | 0.001 |
T | 1.281 | 0.261 | ||||
CON (n = 20) | 2.10 ± 0.79 | 2.20 ± 0.83 | G × T | 0.235 | 0.629 | |
Rotary Stability | EX (n = 20) | 1.15 ± 0.48 | 1.90 ± 0.59 | G | 1.361 | 0.247 |
T *** | 12.249 | 0.001 | ||||
CON (n = 20) | 1.65 ± 0.48 | 1.65 ± 0.48 | G × T ### | 12.249 | 0.001 | |
Total Score | EX (n = 20) | 9.75 ± 1.61 | 12.85 ± 1.75 | G ++ | 7.756 | 0.007 |
T *** | 21.545 | 0.001 | ||||
CON (n = 20) | 12.05 ± 2.52 | 12.95 ± 1.66 | G × T # | 6.517 | 0.013 | |
Functional Leg Length (Left) | EX (n = 20) | 98.85 ± 2.53 | 98.22 ± 1.96 | G | 0.580 | 0.449 |
T | 0.448 | 0.505 | ||||
CON (n = 20) | 98.27 ± 2.89 | 98.07 ± 2.17 | G × T | 0.154 | 0.696 | |
Functional Leg Length (Right) | EX (n = 20) | 99.02 ± 2.41 | 98.10 ± 2.27 | G | 0.455 | 0.502 |
T | 1.095 | 0.299 | ||||
CON (n = 20) | 98.22 ± 2.80 | 98.42 ± 2.06 | G × T | 0.195 | 0.660 | |
Structural Leg Length (Left) | EX (n = 20) | 93.65 ± 2.87 | 92.72 ± 2.30 | G | 0.932 | 0.338 |
T | 0.021 | 0.886 | ||||
CON (n = 20) | 93.40 ± 3.05 | 93.15 ± 2.59 | G × T | 0.307 | 0.581 | |
Structural Leg Length (Right) | EX (n = 20) | 93.55 ± 3.13 | 92.80 ± 2.50 | G | 0.681 | 0.412 |
T | 0.681 | 0.412 | ||||
CON (n = 20) | 93.87 ± 3.30 | 93.55 ± 2.62 | G × T | 0.106 | 0.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.-H.; Jeong, H.-M.; Park, D.-J.; Sung, J.-Y.; Lee, K.-L. Effects of Toe-Strengthening Exercises on Medial Longitudinal Arch Height, Muscle Stiffness, and Functional Movement. Appl. Sci. 2024, 14, 9842. https://doi.org/10.3390/app14219842
Jeong D-H, Jeong H-M, Park D-J, Sung J-Y, Lee K-L. Effects of Toe-Strengthening Exercises on Medial Longitudinal Arch Height, Muscle Stiffness, and Functional Movement. Applied Sciences. 2024; 14(21):9842. https://doi.org/10.3390/app14219842
Chicago/Turabian StyleJeong, Deok-Hwa, Hyeong-Mo Jeong, Dong-Ju Park, Jun-Young Sung, and Kyu-Lim Lee. 2024. "Effects of Toe-Strengthening Exercises on Medial Longitudinal Arch Height, Muscle Stiffness, and Functional Movement" Applied Sciences 14, no. 21: 9842. https://doi.org/10.3390/app14219842
APA StyleJeong, D. -H., Jeong, H. -M., Park, D. -J., Sung, J. -Y., & Lee, K. -L. (2024). Effects of Toe-Strengthening Exercises on Medial Longitudinal Arch Height, Muscle Stiffness, and Functional Movement. Applied Sciences, 14(21), 9842. https://doi.org/10.3390/app14219842