A Comprehensive Evaluation of Machine Learning Algorithms for Digital Soil Organic Carbon Mapping on a National Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Soil Samples
2.2. Environmental Covariates Used for Digital SOC Mapping
2.3. Machine Learning Regression Algorithms Evaluated for Digital SOC Mapping
2.4. Accuracy Assessment
3. Results and Discussion
4. Conclusions
- RF ranked first in France (mainland) and second in the Czech Republic for prediction accuracy, confirming its prominence in previous studies. RF should be prioritized for future evaluations in national-scale digital SOC mapping.
- KNN and PLS achieved high prediction accuracy in France and the Czech Republic, respectively, but performed near average in other study areas. Their effectiveness depends on the quantity and distribution of input soil sampling data, warranting situational evaluation.
- The ranking of GBM and KNN suggests they are underrated and should be more frequently considered in future digital SOC studies.
- In contrast, CUB, MLR, and SVM were highly ranked in previous studies but did not justify their popularity based on this study’s findings.
- While France and the Czech Republic serve as representative European countries, the study’s observations are limited. Future research should explore areas beyond human-made borders and consider more interpretable machine learning approaches.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm | Hyperparameter | Optimal Hyperparameter Value | |
---|---|---|---|
France (Mainland) | Czech Republic | ||
RF | mtry | 18 | 9 |
CUB | committees | 20 | 20 |
neighbors | 9 | 9 | |
MLR | intercept | TRUE | TRUE |
SVM | sigma | 0.021 | 0.019 |
C | 0.5 | 2 | |
ANN | neurons | 2 | 1 |
PLS | ncomp | 10 | 4 |
CART | cp | 0.007 | 0.036 |
GBM | n.trees | 50 | 50 |
interaction.depth | 6 | 5 | |
shrinkage | 0.1 | 0.1 | |
n.minobsinnode | 10 | 10 | |
QRF | mtry | 34 | 5 |
XGB | nrounds | 50 | 50 |
lambda | 0.0002 | 0.0075 | |
alpha | 0.1 | 0.042 | |
eta | 0.3 | 0.3 | |
KNN | k | 19 | 11 |
GLM | / | / | / |
GAM | select | TRUE | TRUE |
method | 1 | 1 | |
LASSO | fraction | 0.722 | 0.278 |
LARS | fraction | 0.789 | 0.367 |
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Srinivasa Rao, C.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Chapter One—Soil Organic Carbon Dynamics: Impact of Land Use Changes and Management Practices: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 156, pp. 1–107. [Google Scholar]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef]
- Gulluscio, C.; Puntillo, P.; Luciani, V.; Huisingh, D. Climate Change Accounting and Reporting: A Systematic Literature Review. Sustainability 2020, 12, 5455. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Angers, D.A.; Holden, N.M.; McBratney, A.B. Soil Organic Carbon across Scales. Glob. Change Biol. 2015, 21, 3561–3574. [Google Scholar] [CrossRef]
- Lemercier, B.; Lagacherie, P.; Amelin, J.; Sauter, J.; Pichelin, P.; Richer-de-Forges, A.C.; Arrouays, D. Multiscale Evaluations of Global, National and Regional Digital Soil Mapping Products in France. Geoderma 2022, 425, 116052. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hartemink, A.E.; Triantafilis, J.; Desai, A.R.; Soldat, D.; Zhu, J.; Townsend, P.A.; Zhang, Y.; Huang, J. Characterization of Field-Scale Soil Variation Using a Stepwise Multi-Sensor Fusion Approach and a Cost-Benefit Analysis. CATENA 2021, 201, 105190. [Google Scholar] [CrossRef]
- Radočaj, D.; Jug, I.; Vukadinović, V.; Jurišić, M.; Gašparović, M. The Effect of Soil Sampling Density and Spatial Autocorrelation on Interpolation Accuracy of Chemical Soil Properties in Arable Cropland. Agronomy 2021, 11, 2430. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the Largest Expandable Soil Dataset for Europe: A Review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting Appropriate Machine Learning Methods for Digital Soil Mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of Digital Soil Mapping Approaches with Large Sets of Environmental Covariates. SOIL 2018, 4, 1–22. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Antonić, O.; Šiljeg, A.; Cukrov, N.; Rapčan, I.; Plaščak, I.; Gašparović, M. A Multiscale Cost–Benefit Analysis of Digital Soil Mapping Methods for Sustainable Land Management. Sustainability 2022, 14, 12170. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital Soil Mapping: A Brief History and Some Lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef]
- Broeg, T.; Blaschek, M.; Seitz, S.; Taghizadeh-Mehrjardi, R.; Zepp, S.; Scholten, T. Transferability of Covariates to Predict Soil Organic Carbon in Cropland Soils. Remote Sens. 2023, 15, 876. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Radočaj, D.; Gašparović, M.; Jurišić, M. Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review. Agriculture 2024, 14, 1005. [Google Scholar] [CrossRef]
- Pouladi, N.; Gholizadeh, A.; Khosravi, V.; Borůvka, L. Digital Mapping of Soil Organic Carbon Using Remote Sensing Data: A Systematic Review. CATENA 2023, 232, 107409. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Peng, J.; Marzahn, P.; Wegmuller, U.; Cartus, O.; Dabrowska-Zielinska, K.; et al. Sentinel-1 Soil Moisture at 1 Km Resolution: A Validation Study. Remote Sens. Environ. 2021, 263, 112554. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.J.; Wade, G.M. A Daily Merged MODIS Aqua–Terra Land Surface Temperature Data Set for the Conterminous United States. Remote Sens. Environ. 2012, 119, 315–324. [Google Scholar] [CrossRef]
- Dai, L.; Ge, J.; Wang, L.; Zhang, Q.; Liang, T.; Bolan, N.; Lischeid, G.; Rinklebe, J. Influence of Soil Properties, Topography, and Land Cover on Soil Organic Carbon and Total Nitrogen Concentration: A Case Study in Qinghai-Tibet Plateau Based on Random Forest Regression and Structural Equation Modeling. Sci. Total Environ. 2022, 821, 153440. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleux, J.; Henke, M.; Qin, W.; Cao, L.; Li, J.; et al. Using the Negative Soil Adjustment Factor of Soil Adjusted Vegetation Index (SAVI) to Resist Saturation Effects and Estimate Leaf Area Index (LAI) in Dense Vegetation Areas. Sensors 2021, 21, 2115. [Google Scholar] [CrossRef] [PubMed]
- Radočaj, D.; Jurišić, M.; Tadić, V. The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion. Agronomy 2023, 13, 2516. [Google Scholar] [CrossRef]
- R: Contributors. Available online: https://www.r-project.org/contributors.html (accessed on 17 August 2024).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. Caret: Classification and Regression Training. Available online: https://CRAN.R-project.org/package=caret (accessed on 30 May 2022).
- Cutler, F. Original by L.B. and A.; Wiener, R. port by A.L. and M. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression. Available online: https://CRAN.R-project.org/package=randomForest (accessed on 23 October 2022).
- Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N.; Quinlan, R. Cubist: Rule- and Instance-Based Regression Modeling. Available online: https://cran.r-project.org/web/packages/Cubist/index.html (accessed on 3 May 2024).
- Karatzoglou, A.; Smola, A.; Hornik, K.; Maniscalco, M.A.; Teo, C.H. Kernlab: Kernel-Based Machine Learning Lab. Available online: https://CRAN.R-project.org/package=kernlab (accessed on 25 October 2022).
- Rodriguez, P.P.; Gianola, D. Brnn: Bayesian Regularization for Feed-Forward Neural Networks. Available online: https://cran.r-project.org/web/packages/brnn/index.html (accessed on 14 October 2024).
- Liland, K.H.; Mevik, B.H.; Wehrens, R.; Hiemstra, P. Pls: Partial Least Squares and Principal Component Regression. Available online: https://CRAN.R-project.org/package=pls (accessed on 21 October 2022).
- Therneau, T.; Atkinson, B.; Ripley, B. Rpart: Recursive Partitioning and Regression Trees. Available online: https://cran.r-project.org/web/packages/rpart/index.html (accessed on 17 August 2024).
- Ridgeway, G.; Edwards, D.; Kriegler, B.; Schroedl, S.; Southworth, H.; Greenwell, B.; Boehmke, B.; Cunningham, J. Developers. G.B.M. Gbm: Generalized Boosted Regression Models 2024. Available online: https://github.com/gbm-developers (accessed on 14 October 2024).
- Meinshausen, N. quantregForest: Quantile Regression Forests. Available online: https://cran.r-project.org/web/packages/quantregForest/index.html (accessed on 17 August 2024).
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting. Available online: https://cran.r-project.org/web/packages/xgboost/index.html (accessed on 14 October 2024).
- Hastie, T. Gam: Generalized Additive Models. Available online: https://cran.r-project.org/web/packages/gam/index.html (accessed on 17 August 2024).
- Hastie, T. Elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA. Available online: https://cran.r-project.org/web/packages/elasticnet/index.html (accessed on 17 August 2024).
- Hastie, T.; Efron, B. Lars: Least Angle Regression, Lasso and Forward Stagewise. Available online: https://cran.r-project.org/web/packages/lars/index.html (accessed on 17 August 2024).
- Mondal, R.; Bhat, A. Comparison of Regression-Based and Machine Learning Techniques to Explain Alpha Diversity of Fish Communities in Streams of Central and Eastern India. Ecol. Indic. 2021, 129, 107922. [Google Scholar] [CrossRef]
- Gbur, E.E.; Stroup, W.W.; McCarter, K.S.; Durham, S.; Young, L.J.; Christman, M.; West, M.; Kramer, M. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-0-89118-182-8. [Google Scholar]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized Additive Models: Building Evidence of Air Pollution, Climate Change and Human Health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Dehmer, M. High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection. Mach. Learn. Knowl. Extr. 2019, 1, 359–383. [Google Scholar] [CrossRef]
- Krishnan, N.M.A.; Kodamana, H.; Bhattoo, R. (Eds.) Parametric Methods for Regression. In Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications; Springer International Publishing: Cham, Switzerland, 2024; pp. 61–83. ISBN 978-3-031-44622-1. [Google Scholar]
- Mikulasek, B.; Fonseca Diaz, V.; Gabauer, D.; Herwig, C.; Nikzad-Langerodi, R. Partial Least Squares Regression with Multiple Domains. J. Chemom. 2023, 37, e3477. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine Learning and Remote Sensing Techniques Applied to Estimate Soil Indicators—Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Hamze-Ziabari, S.M.; Bakhshpoori, T. Improving the Prediction of Ground Motion Parameters Based on an Efficient Bagging Ensemble Model of M5′ and CART Algorithms. Appl. Soft Comput. 2018, 68, 147–161. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the Predictive Capability of Ensemble Tree Methods for Landslide Susceptibility Mapping Using XGBoost, Gradient Boosting Machine, and Random Forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Graeler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [PubMed]
- Lagacherie, P.; Arrouays, D.; Bourennane, H.; Gomez, C.; Nkuba-Kasanda, L. Analysing the Impact of Soil Spatial Sampling on the Performances of Digital Soil Mapping Models and Their Evaluation: A Numerical Experiment on Quantile Random Forest Using Clay Contents Obtained from Vis-NIR-SWIR Hyperspectral Imagery. Geoderma 2020, 375, 114503. [Google Scholar] [CrossRef]
- Demir, S.; Şahin, E.K. Liquefaction Prediction with Robust Machine Learning Algorithms (SVM, RF, and XGBoost) Supported by Genetic Algorithm-Based Feature Selection and Parameter Optimization from the Perspective of Data Processing. Environ. Earth Sci. 2022, 81, 459. [Google Scholar] [CrossRef]
- Huber, F.; Yushchenko, A.; Stratmann, B.; Steinhage, V. Extreme Gradient Boosting for Yield Estimation Compared with Deep Learning Approaches. Comput. Electron. Agric. 2022, 202, 107346. [Google Scholar] [CrossRef]
- Baltensweiler, A.; Walthert, L.; Hanewinkel, M.; Zimmermann, S.; Nussbaum, M. Machine Learning Based Soil Maps for a Wide Range of Soil Properties for the Forested Area of Switzerland. Geoderma Reg. 2021, 27, e00437. [Google Scholar] [CrossRef]
- Dutschmann, T.-M.; Kinzel, L.; ter Laak, A.; Baumann, K. Large-Scale Evaluation of k-Fold Cross-Validation Ensembles for Uncertainty Estimation. J. Cheminformatics 2023, 15, 49. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Radočaj, D.; Jurišić, M. Ensemble Machine Learning Prediction of Anaerobic Co-Digestion of Manure and Thermally Pretreated Harvest Residues. Bioresour. Technol. 2024, 402, 130793. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. SOIL 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- Radočaj, D.; Gašparović, M.; Radočaj, P.; Jurišić, M. Geospatial Prediction of Total Soil Carbon in European Agricultural Land Based on Deep Learning. Sci. Total Environ. 2024, 912, 169647. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, C.; Yang, H.; Yang, G.; Han, L.; Li, Z.; Feng, H.; Xu, B.; Wu, J.; Lei, L. Estimation of Maize Above-Ground Biomass Based on Stem-Leaf Separation Strategy Integrated with LiDAR and Optical Remote Sensing Data. PeerJ 2019, 7, e7593. [Google Scholar] [CrossRef]
- Notton, G.; Voyant, C.; Fouilloy, A.; Duchaud, J.L.; Nivet, M.L. Some Applications of ANN to Solar Radiation Estimation and Forecasting for Energy Applications. Appl. Sci. 2019, 9, 209. [Google Scholar] [CrossRef]
- Najwer, A.; Jankowski, P.; Niesterowicz, J.; Zwoliński, Z. Geodiversity Assessment with Global and Local Spatial Multicriteria Analysis. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102665. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Brus, D.J. How to Compare Sampling Designs for Mapping? Eur. J. Soil Sci. 2021, 72, 35–46. [Google Scholar] [CrossRef]
- Broeg, T.; Don, A.; Gocht, A.; Scholten, T.; Taghizadeh-Mehrjardi, R.; Erasmi, S. Using Local Ensemble Models and Landsat Bare Soil Composites for Large-Scale Soil Organic Carbon Maps in Cropland. Geoderma 2024, 444, 116850. [Google Scholar] [CrossRef]
- Radočaj, D.; Tuno, N.; Mulahusić, A.; Jurišić, M. Evaluation of Ensemble Machine Learning for Geospatial Prediction of Soil Iron in Croatia. Poljoprivreda 2023, 29, 53–61. [Google Scholar] [CrossRef]
- Adeniyi, O.D.; Brenning, A.; Bernini, A.; Brenna, S.; Maerker, M. Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy. Land 2023, 12, 494. [Google Scholar] [CrossRef]
Machine Learning Algorithm | Abbreviation | Total Papers Indexed in WoSCC (–2023) | Library | Reference |
---|---|---|---|---|
Random Forest | RF | 347 | randomForest | [27] |
Cubist | CUB | 92 | Cubist | [28] |
Multiple Linear Regression | MLR | 85 | / | [25] |
Support Vector Machines | SVMs | 82 | kernlab | [29] |
Artificial Neural Networks | ANNs | 72 | brnn | [30] |
Partial Least Squares | PLS | 61 | pls | [31] |
Classification and Regression Trees | CARTs | 40 | rpart | [32] |
Gradient Boosting Machine | GBM | 35 | gbm | [33] |
Quantile Random Forest | QRF | 31 | quantregForest | [34] |
Extreme Gradient Boosting | XGB | 23 | xgboost | [35] |
K-Nearest Neighbors | KNN | 15 | / | [25] |
Generalized Linear Model | GLM | 12 | / | [25] |
Generalized Additive Model | GAM | 11 | gam | [36] |
Least Absolute Shrinkage and Selection Operator | LASSO | 9 | elasticnet | [37] |
Least Angle Regression | LAR | 2 | lars | [38] |
Dataset | Preprocessed | n | Median | Min | Max | CV | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
France (mainland) | No | 2731 | 23.0 | 3.2 | 473.0 | 1.07 | 4.88 | 37.72 |
Yes | 2514 | 25.6 | 3.2 | 74.1 | 0.59 | 1.08 | 0.56 | |
Czech Republic | No | 445 | 19.9 | 3.2 | 208.6 | 0.90 | 3.46 | 15.60 |
Yes | 400 | 21.2 | 3.2 | 51.2 | 0.44 | 1.19 | 1.03 | |
Entire LUCAS 2018 | No | 18,984 | 21.8 | 2.1 | 723.9 | 1.72 | 3.97 | 16.62 |
Algorithm | France (Mainland) | Czech Republic | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | NRMSE | MAE | R2 | RMSE | NRMSE | MAE | |
RF | 0.411 | 11.58 | 0.453 | 8.61 | 0.249 | 8.19 | 0.386 | 6.22 |
CUB | 0.378 | 11.97 | 0.468 | 8.76 | 0.191 | 8.55 | 0.403 | 6.48 |
MLR | 0.375 | 11.95 | 0.468 | 8.93 | 0.216 | 8.45 | 0.398 | 6.43 |
SVM | 0.388 | 11.99 | 0.469 | 8.44 | 0.227 | 8.39 | 0.395 | 6.14 |
ANN | 0.378 | 11.91 | 0.466 | 8.86 | 0.230 | 8.27 | 0.390 | 6.22 |
PLS | 0.375 | 11.93 | 0.467 | 8.92 | 0.256 | 8.12 | 0.383 | 6.19 |
CART | 0.307 | 12.63 | 0.494 | 9.50 | 0.152 | 8.89 | 0.419 | 6.69 |
GBM | 0.390 | 11.79 | 0.462 | 8.78 | 0.239 | 8.26 | 0.389 | 6.30 |
QRF | 0.409 | 11.80 | 0.462 | 8.29 | 0.223 | 8.41 | 0.396 | 6.09 |
XGB | 0.341 | 12.46 | 0.488 | 9.20 | 0.212 | 8.66 | 0.408 | 6.51 |
KNN | 0.393 | 11.79 | 0.461 | 8.60 | 0.217 | 8.40 | 0.396 | 6.29 |
GLM | 0.375 | 11.95 | 0.468 | 8.93 | 0.206 | 8.50 | 0.401 | 6.48 |
GAM | 0.373 | 11.97 | 0.468 | 8.89 | 0.135 | 9.32 | 0.439 | 7.05 |
LASSO | 0.376 | 11.92 | 0.466 | 8.92 | 0.229 | 8.22 | 0.387 | 6.23 |
LARS | 0.375 | 11.91 | 0.466 | 8.91 | 0.241 | 8.23 | 0.388 | 6.20 |
Algorithm | Rank per WoSCC Indexing | Accuracy Assessment Rank | Rank Difference | ||
---|---|---|---|---|---|
France (Mainland) | Czech Republic | France (Mainland) | Czech Republic | ||
RF | 1 | 1 | 2 | 0 | −1 |
CUB | 2 | 11 | 12 | −9 | −10 |
MLR | 3 | 10 | 10 | −7 | −7 |
SVM | 4 | 13 | 7 | −9 | −3 |
ANN | 5 | 5 | 6 | 0 | −1 |
PLS | 6 | 8 | 1 | −2 | 5 |
CART | 7 | 15 | 14 | −8 | −7 |
GBM | 8 | 3 | 5 | 5 | 3 |
QRF | 9 | 4 | 9 | 5 | 0 |
XGB | 10 | 14 | 13 | −4 | −3 |
KNN | 11 | 2 | 8 | 9 | 3 |
GLM | 12 | 9 | 11 | 3 | 1 |
GAM | 13 | 12 | 15 | 1 | −2 |
LASSO | 14 | 7 | 3 | 7 | 11 |
LARS | 15 | 6 | 4 | 9 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radočaj, D.; Jug, D.; Jug, I.; Jurišić, M. A Comprehensive Evaluation of Machine Learning Algorithms for Digital Soil Organic Carbon Mapping on a National Scale. Appl. Sci. 2024, 14, 9990. https://doi.org/10.3390/app14219990
Radočaj D, Jug D, Jug I, Jurišić M. A Comprehensive Evaluation of Machine Learning Algorithms for Digital Soil Organic Carbon Mapping on a National Scale. Applied Sciences. 2024; 14(21):9990. https://doi.org/10.3390/app14219990
Chicago/Turabian StyleRadočaj, Dorijan, Danijel Jug, Irena Jug, and Mladen Jurišić. 2024. "A Comprehensive Evaluation of Machine Learning Algorithms for Digital Soil Organic Carbon Mapping on a National Scale" Applied Sciences 14, no. 21: 9990. https://doi.org/10.3390/app14219990
APA StyleRadočaj, D., Jug, D., Jug, I., & Jurišić, M. (2024). A Comprehensive Evaluation of Machine Learning Algorithms for Digital Soil Organic Carbon Mapping on a National Scale. Applied Sciences, 14(21), 9990. https://doi.org/10.3390/app14219990