Operation of Photo Electron Spectrometers for Non-Invasive Photon Diagnostics at the European X-Ray Free Electron Laser
Abstract
:1. Introduction
- The hard X-ray PES (hxPES) performance was tested and characterized at the hard X-ray synchrotron PETRA III, P09 beamline [16]. After that, it was commissioned in early 2022 at the SASE1 beamline with the downstream scientific instruments Single Particles, Clusters, and Biomolecules & Serial Femtosecond Crystallography(SPB/SFX) [17] and Femtosecond X-ray Experiments (FXE) [18]. Typical applications include experiments at resonances where narrow and precise bandwidth is crucial as well as absolute photon energy calibration. The monochromator is used to select the desired photon energy, but users rely on precise undulator tuning, which can only be achieved with the non-invasive diagnostics that the PES provides. The design of the hxPES had to account for very high electron kinetic energies, requiring a robust construction for an applied voltage of up to 10 kV without dielectric breakdown. Moreover, the poor photoionization cross-section places stringent demands on electron optics for high detection efficiency.
- The soft X-ray PES (sxPES) [19] in operation since the beginning of 2018 supports the SASE3 beamline with the instruments Small Quantum Systems (SQS) and Spectroscopy and Coherent Scattering (SCS) as well as the recently commissioned Soft X-ray Port (SXP). Experiments where the undulator gap is tuned to scan the photon energy require reliable and well-calibrated spectral distribution diagnostics over the entire range [20]. For studies of X-ray magnetic circular dichroism, circular birefringence and chirality [21,22], the beamline offers arbitrary elliptical polarization [23]. Polarization diagnostics requires angle-resolved spectroscopy, which is achieved with a total of 16 detectors distributed along the polar angle. Furthermore, two-color operation with an optical delay for pump–probe studies demands independent control of retardation voltages for individual flight-tubes [24].
2. Instrument
3. Hard X-Rays
4. Soft X-Rays: Polarization
5. Soft X-Rays: Two Color Operation
6. Soft X-Rays: Virtual Spectrometer
7. Online Monitoring and Automation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allaria, E.; Diviacco, B.; Callegari, C.; Finetti, P.; Mahieu, B.; Viefhaus, J.; Zangrando, M.; De Ninno, G.; Lambert, G.; Ferrari, E.; et al. Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser. Phys. Rev. X 2014, 4, 041040. [Google Scholar] [CrossRef]
- Hartmann, G.; Lindahl, A.O.; Knie, A.; Hartmann, N.; Lutman, A.A.; MacArthur, J.P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J.M.; et al. Circular dichroism measurements at an x-ray free-electron laser with polarization control. Rev. Sci. Instrum. 2016, 87, 083113. [Google Scholar] [CrossRef]
- Bostedt, C.; Boutet, S.; Fritz, D.M.; Huang, Z.; Lee, H.J.; Lemke, H.T.; Robert, A.; Schlotter, W.F.; Turner, J.J.; Williams, G.J. Linac Coherent Light Source: The first five years. Rev. Mod. Phys. 2016, 88, 015007. [Google Scholar] [CrossRef]
- Walter, P.; Kamalov, A.; Gatton, A.; Driver, T.; Bhogadi, D.; Castagna, J.-C.; Cheng, X.; Shi, H.; Obaid, R.; Cryan, J.; et al. Multi-resolution electron spectrometer array for future free-electron laser experiments. J. Synchrotron Radiat. 2021, 28, 1364–1376. [Google Scholar] [CrossRef] [PubMed]
- Grünert, J.; Carbonell, M.P.; Dietrich, F.; Falk, T.; Freund, W.; Koch, A.; Kujala, N.; Laksman, J.; Liu, J.; Maltezopoulos, T.; et al. X-ray photon diagnostics at the European XFEL. J. Synchrotron Radiat. 2019, 26, 1422–1431. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Bican, Y.; Bonfigt, S.; Brachmanski, M.; Braune, M.; Jastrow, U.F.; Gottwald, A.; Kaser, H.; Richter, M.; Tiedtke, K. An X-ray gas monitor for free-electron lasers. J. Synchrotron Radiat. 2019, 26, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Kujala, N.; Freund, W.; Liu, J.; Koch, A.; Falk, T.; Planas, M.; Dietrich, F.; Laksman, J.; Maltezopoulos, T.; Risch, J.; et al. Hard x-ray single-shot spectrometer at the European X-ray Free-Electron Laser. Rev. Sci. Instrum. 2020, 91, 103101. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Laksman, J.; Mazza, T.; Doumy, G.; Koulentianos, D.; Picchiotti, A.; Serkez, S.; Rohringer, N.; Ilchen, M.; Meyer, M.; et al. Ghost-imaging-enhanced noninvasive spectral characterization of stochastic x-ray free-electron-laser pulses. Commun. Phys. 2022, 5, 191. [Google Scholar] [CrossRef]
- Gerasimova, N.; La Civita, D.; Samoylova, L.; Vannoni, M.; Villanueva, R.; Hickin, D.; Carley, R.; Gort, R.; Van Kuiken, B.E.; Miedema, P.; et al. The soft X-ray monochromator at the SASE3 beamline of the European XFEL: From design to operation. J. Synchrotron Radiat. 2022, 29, 1299–1308. [Google Scholar] [CrossRef]
- Krause, M.O.; Oliver, J.H. Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 1979, 8, 329–338. [Google Scholar] [CrossRef]
- Saloman, E.; Hubbell, J.; Scofield, J. X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92. At. Data Nucl. Data Tables 1988, 38, 1–196. [Google Scholar] [CrossRef]
- Yeh, J.; Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 < Z < 103. At. Data Nucl. Data Tables 1985, 32, 1–155. [Google Scholar]
- Deslattes, R.D.; Kessler, E.G.; Indelicato, P.; de Billy, L.; Lindroth, E.; Anton, J. X-ray transition energies: New approach to a comprehensive evaluation. Rev. Mod. Phys. 2003, 75, 35–99. [Google Scholar] [CrossRef]
- Derevianko, A.; Johnson, W.R.; Cheng, K.T. Non-dipole effects in photoelectron angular distributions for rare gas atoms. At. Data Nucl. Data Tables 1999, 73, 153–211. [Google Scholar] [CrossRef]
- Jurvansuu, M.; Kivimäki, A.; Aksela, S. Inherent lifetime widths of Ar 2p−1, Kr 3d−1, Xe 3d−1, and Xe 4d−1 states. Phys. Rev. A 2001, 64, 012502. [Google Scholar] [CrossRef]
- Laksman, J.; Dietrich, F.; Liu, J.; Maltezopoulos, T.; Planas, M.; Freund, W.; Gautam, R.; Kujala, N.; Francoual, S.; Grünert, J. Development of a photoelectron spectrometer for hard x-ray photon diagnostics. Rev. Sci. Instrum. 2022, 93, 115111. [Google Scholar] [CrossRef]
- Mancuso, A.P.; Aquila, A.; Batchelor, L.; Bean, R.J.; Bielecki, J.; Borchers, G.; Doerner, K.; Giewekemeyer, K.; Graceffa, R.; Kelsey, O.D.; et al. The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: Initial installation. J. Synchrotron Radiat. 2019, 26, 660–676. [Google Scholar] [CrossRef]
- Galler, A.; Gawelda, W.; Biednov, M.; Bomer, C.; Britz, A.; Brockhauser, S.; Choi, T.K.; Diez, M.; Frankenberger, P.; French, M.; et al. Scientific instrument Femtosecond X-ray Experiments (FXE): Instrumentation and baseline experimental capabilities. J. Synchrotron Radiat. 2019, 26, 1432–1447. [Google Scholar] [CrossRef]
- Laksman, J.; Buck, J.; Glaser, L.; Planas, M.; Dietrich, F.; Liu, J.; Maltezopoulos, T.; Scholz, F.; Seltmann, J.; Hartmann, G.; et al. Commissioning of a photoelectron spectrometer for soft X-ray photon diagnostics at the European XFEL. J. Synchrotron Radiat. 2019, 26, 1010–1016. [Google Scholar] [CrossRef]
- Rörig, A.; Son, S.K.; Mazza, T.; Schmidt, P.; Baumann, T.M.; Erk, B.; Ilchen, M.; Laksman, J.; Music, V.; Pathak, S.; et al. Multiple-core-hole resonance spectroscopy with ultraintense X-ray pulses. Nat. Commun. 2023, 14, 5738. [Google Scholar] [CrossRef]
- Kimel, A.; Zvezdin, A.; Sharma, S.; Shallcross, S.; de Sousa, N.; García-Martín, A.; Salvan, G.; Hamrle, J.; Stejskal, O.; McCord, J.; et al. The 2022 magneto-optics roadmap. J. Phys. Appl. Phys. 2022, 55, 463003. [Google Scholar] [CrossRef]
- Ilchen, M.; Allaria, E.; Ribič, P.R.; Nuhn, H.D.; Lutman, A.; Schneidmiller, E.; Tischer, M.; Yurkov, M.; Calvi, M.; Prat, E.; et al. Opportunities for Gas-Phase Science at Short-Wavelength Free-Electron Lasers with Undulator-Based Polarization Control. arXiv 2023, arXiv:2311.11519. [Google Scholar]
- Karabekyan, S.; Abeghyan, S.; Bagha-Shanjani, M.; Block, A.; Brügger, M.; Calvi, M.; Casalbuoni, S.; Danner, S.; Decking, W.; Englisch, U.; et al. SASE3 Variable Polarization Project at the European XFEL. In Proceedings of the 12th International Particle Accelerator Conference, Campinas, Brazil, 24–28 May 2021. [Google Scholar]
- Serkez, S.; Decking, W.; Froehlich, L.; Gerasimova, N.; Grünert, J.; Guetg, M.; Huttula, M.; Karabekyan, S.; Koch, A.; Kocharyan, V.; et al. Opportunities for Two-Color Experiments in the Soft X-ray Regime at the European XFEL. Appl. Sci. 2020, 10, 2728. [Google Scholar] [CrossRef]
- Dahl, D.A. simion for the personal computer in reflection. Int. J. Mass Spectrom. 2000, 200, 3–25. [Google Scholar] [CrossRef]
- Werme, L.O.; Bergmark, T.; Siegbahn, K. The High Resolution L2,3MM and M4,5NN Auger Spectra from Krypton and M4,5NN and N4,5OO Auger Spectra from Xenon. Phys. Scr. 1972, 6, 141. [Google Scholar] [CrossRef]
- Aksela, H.; Aksela, S.; Väyrynen, J.; Thomas, T.D. L2,3M4,5X Auger electron spectra of Br2 and Kr: Anomalous L2M2,3M4,5 spectra. Phys. Rev. A 1980, 22, 1116–1123. [Google Scholar] [CrossRef]
- Levin, J.C.; Sorensen, S.L.; Crasemann, B.; Chen, M.H.; Brown, G.S. Krypton L-MM Auger spectra: New measurements and analysis. Phys. Rev. A 1986, 33, 968–976. [Google Scholar] [CrossRef]
- Boudjemia, N.; Jänkälä, K.; Gejo, T.; Kohmura, Y.; Huttula, M.; Piancastelli, M.N.; Simon, M.; Oura, M.; Püttner, R. Experimental and theoretical study of the Kr L-shell Auger decay. Phys. Rev. A 2021, 104, 012804. [Google Scholar] [CrossRef]
- Li, S.; Koulentianos, D.; Southworth, S.H.; Doumy, G.; Young, L.; Walko, D.A.; Püttner, R.; Bozek, J.D.; Céolin, D.; Verma, A.; et al. Manifestation of postcollision interaction in Krypton LMN Auger spectra following K-shell photoionization. Phys. Rev. A 2022, 106, 023110. [Google Scholar] [CrossRef]
- Asplund, L.; Kelfve, P.; Blomster, B.; Siegbahn, H.; Siegbahn, K. Argon KLL and KLM Auger Electron Spectra. Phys. Scr. 1977, 16, 268. [Google Scholar] [CrossRef]
- Püttner, R.; Jänkälä, K.; Kushawaha, R.K.; Marchenko, T.; Goldsztejn, G.; Travnikova, O.; Guillemin, R.; Journel, L.; Ismail, I.; Cunha de Miranda, B.; et al. Detailed assignment of normal and resonant Auger spectra of Xe near the L edges. Phys. Rev. A 2017, 96, 022501. [Google Scholar] [CrossRef]
- Aksela, H.; Aksela, S.; Tulkki, J.; Åberg, T.; Bancroft, G.M.; Tan, K.H. Auger emission from the resonantly excited 1s12s22p63p state of Ne. Phys. Rev. A 1989, 39, 3401–3405. [Google Scholar] [CrossRef] [PubMed]
- Moddeman, W.E.; Carlson, T.A.; Krause, M.O.; Pullen, B.P.; Bull, W.E.; Schweitzer, G.K. Determination of the K—LL Auger Spectra of N2, O2, CO, NO, H2O, and CO2. J. Chem. Phys. 1971, 55, 2317–2336. [Google Scholar] [CrossRef]
- Sorensen, S.; Miron, C.; Feifel, R.; Piancastelli, M.N.; Björneholm, O.; Svensson, S. The influence of the σ resonance on the Auger decay of core-ionized molecular nitrogen. Chem. Phys. Lett. 2008, 456, 1–6. [Google Scholar] [CrossRef]
- Oura, M.; Gejo, T.; Nagaya, K.; Kohmura, Y.; Tamasaku, K.; Journel, L.; Piancastelli, M.N.; Simon, M. Hard x-ray photoelectron spectroscopy on heavy atoms and heavy-element containing molecules using synchrotron radiation up to 35 keV at SPring-8 undulator beamlines. New J. Phys. 2019, 21, 043015. [Google Scholar] [CrossRef]
- Lindle, D.W.; Truesdale, C.M.; Kobrin, P.H.; Ferrett, T.A.; Heimann, P.A.; Becker, U.; Kerkhoff, H.G.; Shirley, D.A. Nitrogen K-shell photoemission and Auger emission from N2 and NO. J. Chem. Phys. 1984, 81, 5375–5378. [Google Scholar] [CrossRef]
- Schäfers, F.; Mertins, H.-C.; Gaupp, A.; Gudat, W.; Mertin, M.; Packe, I.; Schmolla, F.; Fonzo, S.D.; Soullié, G.; Jark, W.; et al. Soft-x-ray polarimeter with multilayer optics: Complete analysis of the polarization state of light. Appl. Opt. 1999, 38, 4074. [Google Scholar] [CrossRef]
- Hauf, S.; Heisen, B.; Aplin, S.; Beg, M.; Bergemann, M.; Bondar, V.; Boukhelef, D.; Danilevsky, C.; Ehsan, W.; Essenov, S.; et al. The Karabo distributed control system. J. Synchrotron Radiat. 2019, 26, 1448–1461. [Google Scholar] [CrossRef]
- Ferreira de Lima, D.E.; Davtyan, A.; Laksman, J.; Gerasimova, N.; Maltezopoulos, T.; Liu, J.; Schmidt, P.; Michelat, T.; Mazza, T.; Grünert, J.; et al. Machine-learning-enhanced spectral characterization of x-ray pulses from a free electron laser. Phys. Sci. 2024; preprint. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laksman, J.; Dietrich, F.; Maltezopoulos, T.; Liu, J.; Ferreira de Lima, D.E.; Gerasimova, N.; Karpics, I.; Kujala, N.; Schmidt, P.; Karabekyan, S.; et al. Operation of Photo Electron Spectrometers for Non-Invasive Photon Diagnostics at the European X-Ray Free Electron Laser. Appl. Sci. 2024, 14, 10152. https://doi.org/10.3390/app142210152
Laksman J, Dietrich F, Maltezopoulos T, Liu J, Ferreira de Lima DE, Gerasimova N, Karpics I, Kujala N, Schmidt P, Karabekyan S, et al. Operation of Photo Electron Spectrometers for Non-Invasive Photon Diagnostics at the European X-Ray Free Electron Laser. Applied Sciences. 2024; 14(22):10152. https://doi.org/10.3390/app142210152
Chicago/Turabian StyleLaksman, Joakim, Florian Dietrich, Theophilos Maltezopoulos, Jia Liu, Danilo Enoque Ferreira de Lima, Natalia Gerasimova, Ivars Karpics, Naresh Kujala, Philipp Schmidt, Suren Karabekyan, and et al. 2024. "Operation of Photo Electron Spectrometers for Non-Invasive Photon Diagnostics at the European X-Ray Free Electron Laser" Applied Sciences 14, no. 22: 10152. https://doi.org/10.3390/app142210152
APA StyleLaksman, J., Dietrich, F., Maltezopoulos, T., Liu, J., Ferreira de Lima, D. E., Gerasimova, N., Karpics, I., Kujala, N., Schmidt, P., Karabekyan, S., Serkez, S., & Grünert, J. (2024). Operation of Photo Electron Spectrometers for Non-Invasive Photon Diagnostics at the European X-Ray Free Electron Laser. Applied Sciences, 14(22), 10152. https://doi.org/10.3390/app142210152