Reliability of a Portable Fixed Dynamometer During Different Isometric Hamstring Assessments
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.3.1. Standing Hamstring Assessment
2.3.2. Supine 90:90 Hamstring Assessment Procedures
2.3.3. Standing 90:20 Hamstring Assessment Procedures
2.4. Data Analyses
2.5. Statistical Analysis
3. Results
3.1. Standing Hamstring Assessment
3.2. Supine 90:90 Assessment
3.3. Standing 90:20 Assessment
3.4. Between Assessment Comparisons
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekstrand, J.; Hägglund, M.; Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.; Suen, A.M.Y.; Yeung, E.W. A prospective cohort study of hamstring injuries in competitive sprinters: Preseason muscle imbalance as a possible risk factor. Br. J. Sports Med. 2009, 43, 589–594. [Google Scholar] [CrossRef]
- Brooks, J.H.M.; Fuller, C.W.; Kemp, S.P.T.; Reddin, D.B. Epidemiology of injuries in English professional rugby union: Part 1 match injuries. Br. J. Sports Med. 2005, 39, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Wing, C.; Bishop, C. Hamstring strain injuries: Incidence, mechanisms, risk factors, and training recommendations. Strength Cond. J. 2020, 42, 40–57. [Google Scholar] [CrossRef]
- Dalton, S.L.; Kerr, Z.Y.; Dompier, T.P. Epidemiology of hamstring strains in 25 NCAA sports in the 2009–2010 to 2013–2014 academic years. Am. J. Sports Med. 2015, 43, 2671–2679. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. Br. J. Sports Med. 2016, 50, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Shield, A.J. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: A prospective study. Am. J. Sports Med. 2015, 43, 2663–2670. [Google Scholar] [CrossRef]
- Croisier, J.-L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.-M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Lee, J.W.Y.; Mok, K.-M.; Chan, H.C.K.; Yung, P.S.H.; Chan, K.-M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Harding, A.T.; Weeks, B.K.; Horan, S.A.; Little, A.; Watson, S.L.; Beck, B.R. Validity and test–retest reliability of a novel simple back extensor muscle strength test. SAGE Open Med. 2017, 5, 2050312116688842. [Google Scholar] [CrossRef] [PubMed]
- Mondin, D.; Owen, J.A.; Negro, M.; D’Antona, G. Validity and reliability of a non-invasive test to assess quadriceps and hamstrings strength in athletes. Front. Physiol. 2018, 9, 405727. [Google Scholar] [CrossRef] [PubMed]
- Opar, D.A.; Piatkowski, T.; Williams, M.D.; Shield, A.J. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: A reliability and retrospective injury study. J. Orthop. Sports Phys. Ther. 2013, 43, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Bettariga, F.; Bishop, C.; Martorelli, L.; Turner, A.; Lazzarini, S.G.; Algeri, C.; Maestroni, L. Acute effects of a fatiguing protocol on peak force and rate of force development of the hamstring muscles in soccer players. J. Sci. Sport Exerc. 2023, 6, 177–185. [Google Scholar] [CrossRef]
- Cuthbert, M.; Comfort, P.; Ripley, N.; McMahon, J.J.; Evans, M.; Bishop, C. Unilateral vs. bilateral hamstring strength assessments: Comparing reliability and inter-limb asymmetries in female soccer players. J. Sports Sci. 2021, 39, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, V.; Méndez-Villanueva, A.; Soler, A.; Del Coso, J.; Courel-Ibáñez, J. No relationship between the nordic hamstring and two different isometric strength tests to assess hamstring muscle strength in professional soccer players. Phys. Ther. Sport 2020, 46, 97–103. [Google Scholar] [CrossRef]
- Ripley, N.J.; Fahey, J.; Cuthbert, M.; McMahon, J.J.; Comfort, P. Rapid force generation during unilateral isometric hamstring assessment: Reliability and relationship to maximal force. Sports Biomech. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Reurink, G.; Goudswaard, G.J.; Moen, M.H.; Tol, J.L.; Verhaar, J.A.N.; Weir, A. Strength measurements in acute hamstring injuries: Intertester reliability and prognostic value of handheld dynamometry. J. Orthop. Sports Phys. Ther. 2016, 46, 689–696. [Google Scholar] [CrossRef]
- Wollin, M.; Purdam, C.; Drew, M.K. Reliability of externally fixed dynamometry hamstring strength testing in elite youth football players. J. Sci. Med. Sport 2016, 19, 93–96. [Google Scholar] [CrossRef]
- McCall, A.; Nedelec, M.; Carling, C.; Le Gall, F.; Berthoin, S.; Dupont, G. Reliability and sensitivity of a simple isometric posterior lower limb muscle test in professional football players. J. Sports Sci. 2015, 33, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Matinlauri, A.; Alcaraz, P.E.; Freitas, T.T.; Mendiguchia, J.; Abedin-Maghanaki, A.; Castillo, A.; Martínez-Ruiz, E.; Carlos-Vivas, J.; Cohen, D.D. A comparison of the isometric force fatigue-recovery profile in two posterior chain lower limb tests following simulated soccer competition. PLoS ONE 2019, 14, e0206561. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.A.; Nolan, B.; Lawlor, P.G.; Kenny, R.A. Hand-held dynamometry: Tester strength is paramount, even in frail populations. J. Rehabil. Med. 2011, 43, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, J.; Eddy, C.; Magnusson, S.P. Reliability and Validity of the End Range Hamstring Strength Test with Handheld Dynamometry. Int. J. Sports Phys. Ther. 2024, 19, 268. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, R.; Jacobsen, P.; Prior, S.; Skazalski, C.; Otten, R.; Johnson, A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J. Sci. Med. Sport 2012, 15, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Holzhauer, L.; Julian, R.; Hughes, J. You don’t run lying down—A novel tool to assess standing isometric hip-extension strength: A pilot study. Sport Perform. Sci. Rep. 2022, 1. [Google Scholar]
- Miralles-Iborra, A.; Moreno-Pérez, V.; Del Coso, J.; Courel-Ibáñez, J.; Elvira, J.L.L. Reliability of a Field-Based Test for Hamstrings and Quadriceps Strength Assessment in Football Players. Appl. Sci. 2023, 13, 4918. [Google Scholar] [CrossRef]
- De Ruiter, C.J.; Jones, D.A.; Sargeant, A.J.; De Haan, A. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp. Physiol. 1999, 84, 1137–1150. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wei, S.; Zhong, Y.; Fu, W.; Li, L.; Liu, Y. How joint torques affect hamstring injury risk in sprinting swing–stance transition. Med. Sci. Sports Exerc. 2015, 47, 373. [Google Scholar] [CrossRef] [PubMed]
- Onishi, H.; Yagi, R.; Oyama, M.; Akasaka, K.; Ihashi, K.; Handa, Y. EMG-angle relationship of the hamstring muscles during maximum knee flexion. J. Electromyogr. Kinesiol. 2002, 12, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Spreadsheets for analysis of validity and reliability. Sportscience 2017, 21, 36. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. Sports Sci. 2009, 27, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Kawaguchi, J.K.; Babcock, G. Validity and reliability of handheld dynametric strength assessment of hip extensor and abductor muscles. Athl. Train. Sports Health Care 2010, 2, 11–17. [Google Scholar] [CrossRef]
- Ter Keurs, H.E.; Iwazumi, T.; Pollack, G.H. The sarcomere length-tension relation in skeletal muscle. J. Gen. Physiol. 1978, 72, 565–592. [Google Scholar] [CrossRef]
Variable | Mean ± SD | % Change in Mean (95% CI) | CV (95% CI) | ICC (95% CI) | |||||
---|---|---|---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | Trial 2-1 | Trial 3-2 | Trial 2-1 | Trial 3-2 | Trial 2-1 | Trial 3-2 | |
Standing | |||||||||
Peak force (N) | 319.4 ± 68.2 | 320.5 ± 69.1 | 320.0 ± 67.8 | 0.3 (−3.6–4.3) | −0.2 (−3.1–2.8) | 5.0 (3.6–8.1) | 3.7 (2.6–6.0) | 0.96 (0.88–0.99) | 0.98 (0.93–0.99) |
Mean force (N) | 264.4 ± 52.5 | 267.3 ± 52.7 | 265.4 ± 51.7 | 1.0 (−4.9–7.3) | −0.7 (−3.4–2.1) | 7.7 (5.5–12.7) | 3.5 (2.5–5.7) | 0.88 (0.67–0.96) | 0.98 (0.93–0.99) |
Impulse (N·s) | 829.7 ± 170.0 | 833.8 ± 134.8 | 826 ± 159 | 1.0 (−5.5–8.0) | −1.3 (−5.2–2.7) | 8.5 (6.1–14.1) | 5.1 (3.7–8.3) | 0.83 (0.54–0.94) | 0.94 (0.83–0.98) |
Peak RFD (N·s−1) | 1503.0 ± 730.6 | 1562.5 ± 569.3 | 1569 ± 790 | 8.0 (−14.8–36.9) | −9.7 (−21.1–3.3) | 28.3 (19.0–54.9) | 17.1 (12.0–29.7) | 0.72 (0.24–0.91) | 0.90 (0.71–0.97) |
Supine 90:90 | |||||||||
Peak force (N) | 337.5 ± 77.4 | 337.2 ± 74.0 | 341.0 ± 76.3 | 0.1 (−3.1–3.4) | 1.1 (−1.3–3.5) | 4.1 (3.0–6.7) | 3.0 (2.2–4.9) | 0.98 (0.94–0.99) | 0.99 (0.96–1.00) |
Mean force (N) | 293.5 ± 69.3 | 286.5 ± 64.2 | 297.6 ± 68.2 | −2.1 (−6.2–2.1) | 3.7 (0.5–7.1) | 5.4 (3.9–8.8) | 3.9 (2.8–6.4) | 0.96 (0.89–0.99) | 0.98 (0.94–0.99) |
Impulse (N·s) | 962.3 ± 237.0 | 947.6 ± 199.6 | 968.8 ± 218.9 | −0.6 (−5.3–4.3) | 1.9 (−1.0–4.9) | 6.1 (4.4–10.0) | 3.6 (2.6–5.9) | 0.96 (0.87–0.99) | 0.98 (0.95–0.99) |
Peak RFD (N·s−1) | 1414.3 ± 601.1 | 1502.1 ± 613.3 | 1694.5 ± 677.3 | 0.7 (−16.2–20.9) | 11.8 (−4.3–30.6) | 23.9 (16.6–42.4) | 21.0 (14.8–35.9) | 0.76 (0.39–0.92) | 0.83 (0.55–0.94) |
Standing 90:20 | |||||||||
Peak force (N) | 487.2 ± 136.3 | 479.3 ± 129.0 | 484.1 ± 133.8 | −1.3 (−3.4–0.8) | 0.8 (−1.6–3.1) | 2.6 (1.9–4.3) | 2.9 (2.1–4.7) | 0.99 (0.98–1.00) | 0.99 (0.98–1.00) |
Mean force (N) | 418.4 ± 118.3 | 411.4 ± 108.5 | 415.8 ± 111.4 | −1.2 (−3.4–1.1) | 1.0 (−2.0–4.0) | 2.8 (2.1–4.6) | 3.7 (2.7–6.1) | 0.99 (0.98–1.00) | 0.99 (0.96–1.00) |
Impulse (N·s) | 1386.9 ± 419.1 | 1321.8 ± 339.9 | 1325.1 ± 373.5 | −3.4 (−8.6–2.0) | −0.5 (−4.4–3.4) | 6.9 (5.0–11.4) | 4.9 (3.5–8.0) | 0.96 (0.88–0.99) | 0.98 (0.93–0.99) |
Peak RFD (N·s−1) | 1552.1± 858.0 | 1413.5 ± 599.2 | 1382.5 ± 651.9 | 9.5 (−7.1–29.1) | −9.9 (−23.8–6.5) | 20.1 (13.9–36.5) | 19.2 (13.1–36.2) | 0.88 (0.64–0.96) | 0.87 (0.60–0.96) |
Variable | Mean ± SD | % Change in Mean (95% CI) | CV (95% CI) | ICC (95% CI) | |||||
---|---|---|---|---|---|---|---|---|---|
Session 1 | Session 2 | Session 3 | Session 2-1 | Session 3-2 | Session 2-1 | Session 3-2 | Session 2-1 | Session 3-2 | |
Standing | |||||||||
Peak force (N) | 308.6 ± 70.9 | 310.9 ± 60.9 | 320.0 ± 67.1 | 1.7 (−4.3–8.1)0 | 2.6 (−2.1–7.5) | 7.8 (5.6–12.8) | 5.9 (4.2–9.6) | 0.91 (0.75–0.97) | 0.94 (0.82–0.98) |
Mean force (N) | 254.2 ± 60.0 | 263.4 ± 51.3 | 265.7 ± 50.3 | 4.7 (−2.5–12.4) | 1.0 (−3.9–6.2) | 9.1 (6.5–15.0) | 6.3 (4.5–10.4) | 0.88 (0.67–0.96) | 0.92 (0.77–0.97) |
Impulse (N·s) | 819.2 ± 167.7 | 839.6 ± 155.7 | 830.1 ± 146.1 | 2.8 (−2.6–8.6) | −1.0 (−5.8–4.2) | 6.9 (5.0–11.4) | 6.4 (4.6–10.4) | 0.90 (0.73–0.97) | 0.91 (0.73–0.97) |
Peak RFD (N·s−1) | 1495.3 ± 856.3 | 1428.4 ± 579.9 | 1712.1 ± 894.3 | 2.5 (−16.4–25.6) | 16.1 (−5.8–43.2) | 28.3 (19.8–49.3) | 29.2 (20.4–51.1) | 0.80 (0.49–0.93) | 0.74 (0.36–0.91) |
Supine 90:90 | |||||||||
Peak force (N) | 321.7 ± 75.3 | 326.3 ± 78.0 | 333.6 ± 75.9 | 1.1 (−4.0–6.6) | 2.7 (−2.4–8.2) | 6.7 (4.8–10.9) | 6.5 (4.7–10.7) | 0.95 (0.86–0.98) | 0.95 (0.86–0.98) |
Mean force (N) | 277.7 ± 66.0 | 279.0 ± 70.8 | 292.5 ± 66.4 | −0.1 (−6.9–7.1) | 5.8 (−1.9–14.1) | 8.9 (6.4–14.8) | 9.7 (7.0–16.1) | 0.92 (0.77–0.97) | 0.90 (0.72–0.97) |
Impulse (N·s) | 956.5 ± 194.7 | 948.2 ± 241.0 | 959.6 ± 215.8 | −2.2 (−13.0–10.0) | 2.1 (−3.7–8.2) | 15.4 (10.9–26.0) | 7.4 (5.3–12.2) | 0.74 (0.36–0.91) | 0.94 (0.83–0.98) |
Peak RFD (N·s−1) | 1388.4 ± 580.0 | 1672.9 ± 641.5 | 1574.3 ± 634.9 | 20.9 (2.8–42.2) | −5.1 (−16.5–7.9) | 22.0 (15.5–37.7) | 17.0 (12.1–28.8) | 0.83 (0.55–0.94) | 0.88 (0.68–0.96) |
Standing 90:20 | |||||||||
Peak force (N) | 475.7 ± 117.5 | 475.0 ± 128.6 | 483.5 ± 132.7 | −0.5 (−7.3–6.7) | 1.7 (−3.3–6.9) | 8.9 (6.4–14.8) | 6.3 (4.5–10.3) | 0.93 (0.80–0.98) | 0.97 (0.90–0.99) |
Mean force (N) | 400.8 ± 98.7 | 410.5 ± 106.3 | 408.1 ± 115.2 | 2.3 (−4.4–9.4) | −1.1 (−7.8–6.0) | 8.6 (6.2–14.3) | 8.9 (6.4–14.8) | 0.93 (0.79–0.98) | 0.93 (0.79–0.98) |
Impulse (N·s) | 1354.8 ± 372.7 | 1344.0 ± 390.6 | 1344.6 ± 373.9 | −0.7 (−9.3–8.7) | 0.5 (−6.9–8.4) | 11.7 (8.4–19.6) | 9.7 (7.0–16.1) | 0.90 (0.73–0.97) | 0.93 (0.79–0.98) |
Peak RFD (N·s−1) | 1415.1 ± 730.0 | 1334.5 ± 609.8 | 1545.4 ± 759.7 | −4.3 (−25.8–23.4) | 14.9 (−5.8–40.1) | 36.6 (25.4–65.3) | 27.5 (19.3–48.0) | 0.64 (0.18–0.87) | 0.78 (0.45–0.92) |
Variable | Peak Force (N) | Mean Force (N) | Impulse (N·s) | Peak RFD (N·s−1) | ||||
---|---|---|---|---|---|---|---|---|
Mean Difference ± SE | p-Value | Mean Difference ± SE | p-Value | Mean Difference ± SE | p-Value | Mean Difference ± SE | p-Value | |
Standing vs. 90:90 | −18.62 ± 14.36 | 0.652 | −26.85 ± 12.34 | 0.146 | −129.44 ± 46.22 | 0.045 | 28.95 ± 164.88 | 1.00 |
Standing vs. 90:20 | −163.6 ± 23.42 | <0.001 | −149.5 ± 21.46 | <0.001 | −514.46 ± 75.82 | <0.001 | 57.86 ± 195.55 | 1.00 |
90:90 vs. 90:20 | −144.9 ± 21.10 | <0.001 | −122.7 ± 17.71 | <0.001 | −385.02 ± 69.88 | <0.001 | 28.91 ± 152.22 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodbridge, R.; Ryan, C.; Burkitt, J.; Ye-Lee, D.; Cronin, J. Reliability of a Portable Fixed Dynamometer During Different Isometric Hamstring Assessments. Appl. Sci. 2024, 14, 10202. https://doi.org/10.3390/app142210202
Woodbridge R, Ryan C, Burkitt J, Ye-Lee D, Cronin J. Reliability of a Portable Fixed Dynamometer During Different Isometric Hamstring Assessments. Applied Sciences. 2024; 14(22):10202. https://doi.org/10.3390/app142210202
Chicago/Turabian StyleWoodbridge, Ryan, Chloe Ryan, Josh Burkitt, Dana Ye-Lee, and John Cronin. 2024. "Reliability of a Portable Fixed Dynamometer During Different Isometric Hamstring Assessments" Applied Sciences 14, no. 22: 10202. https://doi.org/10.3390/app142210202
APA StyleWoodbridge, R., Ryan, C., Burkitt, J., Ye-Lee, D., & Cronin, J. (2024). Reliability of a Portable Fixed Dynamometer During Different Isometric Hamstring Assessments. Applied Sciences, 14(22), 10202. https://doi.org/10.3390/app142210202