Adaptive Network Routing Technology for Near-Moon Space Cross-Domain Transmission
Abstract
:1. Introduction
2. Hybrid Link Resource Prediction and Scheduling Model
2.1. Problem Description
2.2. Communication Networking Model
3. Routing Scheduling Algorithm
3.1. Sub-Network Clustering
3.1.1. Time-Varying Topology Sub-Network Set Sub-Network Clustering
3.1.2. Fixed Topology Sub-Network Set and Sub-Network Clustering
3.2. Hierarchical Domain Value Routing Search
4. Simulation and Verification
4.1. Link Stability Comparison
4.2. Link Load Comparison
4.3. Comparison of Routing Time Delay
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Notation | Definition |
a | The circumlunar domain |
e | The near-Earth domain |
m | The lunar surface domain |
t | The Earth–Moon transfer domain |
U | The communication nodal domain |
M | Number of communication nodes |
The communication nodal domain of | |
Number of domain i’s communication nodes, | |
The topological sub-network of domain | |
Set of fixed topological sub-networks | |
Set of time-varying topological sub-networks | |
Communication interactions between two distinct sub-networks and | |
C | The communication channel between links |
f | The communication rate function |
q | The identification number of communication nodes or communication channels |
The communication efficiency | |
The efficiency coefficient | |
The physical distance of the search radius | |
The communication sub-network | |
The routing delay time | |
Maximum routing hop count constraint | |
The link stability | |
The link load |
References
- Wang, L.; Yu, J.; Tian, M. Research on Key Technologies of Lunar Patrol Perception in Sparse Scenes. UPB Sci. Bull. Ser. C 2023, 85, 33–48. [Google Scholar]
- Serria, E.; Gadhafi, R.; AlMaeeni, S.; Mukhtar, H.; Copiaco, A.; Abd-Alhameed, R.; Lemieux, F.; Mansoor, W. A Review of Lunar Communications and Antennas: Assessing Performance in the Context of Propagation and Radiation. Sensors 2023, 23, 9832. [Google Scholar] [CrossRef] [PubMed]
- Win, N.N.; Kida, K.; Ko, M.; Jiei, S.; Cosentino, S.; Ishii, H.; Takanishi, A. A novel particle filter based SLAM algorithm for lunar navigation and exploration. In Proceedings of the 2019 4th International Conference on Robotics and Automation Engineering (ICRAE), Singapore, 22–24 November 2019; pp. 74–78. [Google Scholar]
- Edwards, B.; Wagner, R.; Zemba, M.; Millard, W.; Braham, S.; Gifford, K.; Somerlock, O. 3GPP mobile telecommunications technology on the Moon. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–12. [Google Scholar]
- Yu, J.; Huang, D.; Li, J.; Li, W.; Wang, X.; Shi, X. Parallel Acceleration of Real-time Feature Extraction Based on SURF Algorithm. In Proceedings of the 2023 15th International Conference on Computer Research and Development (ICCRD), Hangzhou, China, 10–12 January 2023; pp. 57–63. [Google Scholar]
- Davarian, F.; Shihabi, M.; Marashi, Y. Lunar Communications Using Relays. In Proceedings of the 2024 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2024; pp. 1–8. [Google Scholar]
- Chen, G.; Wu, S.; You, J.; Zhang, Q. Communication-Navigation Integrated Satellite Constellation for Lunar Exploration: Frozen-Orbit Based HyInc Walker. IEEE J. Sel. Areas Commun. 2024, 42, 1436–1452. [Google Scholar] [CrossRef]
- Pei, Z.; Liu, J.; Wang, Q.; Kang, Y.; Zou, Y.; Zhang, H.; Zhang, Y.; He, H.; Wang, Q.; Yang, R.; et al. Overview of lunar exploration and international lunar research station. Chin. Sci. Bull. 2020, 65, 2577–2586. [Google Scholar] [CrossRef]
- Ding, C.; Li, C.; Wang, Z.; Gao, Z.; Liu, Z.; Song, J.; Tao, M. Free space optical communication networking technology based on a laser relay station. Appl. Sci. 2023, 13, 2567. [Google Scholar] [CrossRef]
- Raza, W.; Abele, E.; O’Hara, J.; Sadr, B.; LoPresti, P.; Imran, A.; Choi, W.; Song, I.; Altunc, S.; Kegege, O.; et al. Toward a hybrid RF/optical lunar communication system (LunarComm). IEEE Netw. 2022, 36, 76–83. [Google Scholar] [CrossRef]
- Wei, M.; Hu, C.; Estévez, D.; Tai, M.; Zhao, Y.; Huang, J.; Bassa, C.; Jan Dijkema, T.; Cao, X.; Wang, F. Design and flight results of the VHF/UHF communication system of Longjiang lunar microsatellites. Nat. Commun. 2020, 11, 3425. [Google Scholar] [CrossRef]
- Christensen, F.; Kientopf, K.; Staudinger, E.; Günes, M. Performance of Routing Protocols over TDMA MAC for Robotic Swarms in Space Exploration. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar]
- Miaja, P.F.; Navarro-Medina, F.; Aller, D.G.; León, G.; Camanzo, A.; Suarez, C.M.; Alonso, F.G.; Nodar, D.; Sauro, F.; Bandecchi, M.; et al. RoboCrane: A system for providing a power and a communication link between lunar surface and lunar caves for exploring robots. Acta Astronaut. 2022, 192, 30–46. [Google Scholar] [CrossRef]
- Niemoeller, S.; Frank, J.; Burton, R.; Levinson, R.; Cramer, N. Scheduling PNT service requests from non-dedicated lunar constellations. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–17. [Google Scholar]
- Bi, Z.; Yung, K.L.; Ip, A.W.; Tang, Y.M.; Zhang, C.W.; Da Xu, L. The state of the art of information integration in space applications. IEEE Access 2022, 10, 110110–110135. [Google Scholar] [CrossRef]
- Haoran, X.; Yafeng, Z.; Xiaowei, W.; Xi, C. Communication-navigation integrated technology and its application in lunar exploration. J. Deep Space Explor. 2021, 8, 154–162. [Google Scholar]
- Israel, D.J.; Mauldin, K.D.; Roberts, C.J.; Mitchell, J.W.; Pulkkinen, A.A.; La Vida, D.C.; Johnson, M.A.; Christe, S.D.; Gramling, C.J. Lunanet: A flexible and extensible lunar exploration communications and navigation infrastructure. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–14. [Google Scholar]
- Zhigang, S.; Xiaofan, X.; Xuanzhuo, L.; Bo, Z.; Yongjiao, W. Design of air-sea cross-domain communication system based on satellite links. Inf. Commun. Technol. Policy 2021, 47, 63. [Google Scholar]
- Tortora, P.; Modenini, D.; Zannoni, M.; Gramigna, E.; Strollo, E.; Togni, A.; Paolini, E.; Valentini, L.; Cocciolillo, O.; Simone, L. Ground and Space Hardware for Interplanetary Communication Networks. In A Roadmap to Future Space Connectivity: Satellite and Interplanetary Networks; Springer: Berlin/Heidelberg, Germany, 2023; pp. 107–138. [Google Scholar]
- Sánchez, B.J.; Covarrubias, D.H.; Yepes, L.F.; Panduro, M.A.; Juárez, E. Effects of narrow beam phased antenna arrays over the radio channel metrics, Doppler power spectrum, and coherence time, in a context of 5G frequency bands. Appl. Sci. 2021, 11, 10081. [Google Scholar] [CrossRef]
- Somerlock, O.; Sharma, A.; Heckler, G.W. Adapting commercial 5G terrestrial networks for space. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–7. [Google Scholar]
- Kodheli, O.; Querol, J.; Astro, A.; Coloma, S.; Rana, L.; Bokal, Z.; Kumar, S.; Luna, C.M.; Thoemel, J.; Duncan, J.C.M.; et al. 5G space communications lab: Reaching new heights. In Proceedings of the 2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS), Los Angeles, CA, USA, 30 May–1 June 2022; pp. 349–356. [Google Scholar]
- Araki, T.; Kotake, H.; Saito, Y.; Tsuji, H.; Toyoshima, M.; Makino, K.; Koga, M.; Sato, N. Recent R&D activities of the Lunar–the Earth Optical Communication Systems in Japan. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Virtual Conference, 29–31 March 2022; pp. 32–35. [Google Scholar]
- Paet, L.B.; Santra, S.; Laine, M.; Yoshida, K. Maintaining connectivity in multi-rover networks for lunar exploration missions. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 1539–1546. [Google Scholar]
- Morgan, K.L.; Andrusenko, J.; Gehman, J.Z.; Somerlock, O.F.; Yao, S.K.; Sharma, A. Lunar propagation modeling using 2D Parabolic Wave and 3D Ray Tracing Solvers at 1.8 GHz. In Proceedings of the 2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM), Honolulu, HI, USA, 9–13 August 2021; pp. 23–26. [Google Scholar]
- Miguélez-Gómez, N.; Yepez, S.A.; Clayton, R.M.; Roberts, B.A.; Korczyk, D.C.; Henderson, T.; Rojas-Nastrucci, E.A. Lunar lander and cubesat-based payload antenna system for a surface wireless local network. In Proceedings of the 2021 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Cleveland, OH, USA, 12–14 October 2021; pp. 97–102. [Google Scholar]
- Babbar, H.; Rani, S.; Islam, S.M.; Iyer, S. Qos based security architecture for software-defined wireless sensor networking. In Proceedings of the 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA), Sydney, Australia, 24–26 November 2021; pp. 1–5. [Google Scholar]
- Luqi, W.; Bingyi, L.; Wei, G.; Weige, Z. Task scheduling of lunar relay satellites for minimal data loss. Chin. Space Sci. Technol. 2020, 40, 60. [Google Scholar]
- Schubert, T.; Wolf, L.; Kulau, U. ns-3-leo: Evaluation tool for satellite swarm communication protocols. IEEE Access 2022, 10, 11527–11537. [Google Scholar] [CrossRef]
- Dudukovich, R.; Gormley, D.; Kancharla, S.; Wagner, K.; Short, R.; Brooks, D.; Fantl, J.; Janardhanan, S.; Fung, A. Toward the development of a multi-agent cognitive networking system for the lunar environment. IEEE J. Radio Freq. Identif. 2022, 6, 269–283. [Google Scholar] [CrossRef]
- Carletta, S. A single-launch deployment strategy for lunar constellations. Appl. Sci. 2023, 13, 5104. [Google Scholar] [CrossRef]
- Davarian, F.; Asmar, S.; Angert, M.; Baker, J.; Gao, J.; Hodges, R.; Israel, D.; Landau, D.; Lay, N.; Torgerson, L.; et al. Improving small satellite communications and tracking in deep space—A review of the existing systems and technologies with recommendations for improvement. Part II: Small satellite navigation, proximity links, and communications link science. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 26–40. [Google Scholar] [CrossRef]
- Farkasvölgyi, A.; Csurgai-Horváth, L.; Boháček, P. The evolution of lunar communication—From the beginning to the present. Int. J. Satell. Commun. Netw. 2024, 42, 200–216. [Google Scholar] [CrossRef]
- Ehrlich, J.W.; Cichan, T.; Gebhardt, A.M.; Marcinkowski, A.; Fuller, J.; Western, D. Exploring extreme lunar environments through in-flight swarm deployments. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Piscataway, NJ, USA, 6–13 March 2021; pp. 1–9. [Google Scholar]
- Abdelsadek, M.Y.; Chaudhry, A.U.; Darwish, T.; Erdogan, E.; Karabulut-Kurt, G.; Madoery, P.G.; Yahia, O.B.; Yanikomeroglu, H. Future space networks: Toward the next giant leap for humankind. IEEE Trans. Commun. 2022, 71, 949–1007. [Google Scholar] [CrossRef]
- Li, X.; Cheng, F.; Zhao, H.; Shen, P.; Liu, D. Analysis on visibility and signal strength of satellite for lunar navigation. Sci. Surv. Mapp. 2022, 47, 14–20. [Google Scholar]
- Yang, J.; Wu, Q.; Yu, D.; Jiang, S.; Xu, Z.; Cui, P. Preliminary study on key technologies for construction and operation of robotics lunar scientific base. J. Deep Space Explor. 2020, 7, 111–117. [Google Scholar]
- Wang, L.; Yu, J.; Cheng, B.; Liu, W.; Niu, Y. On-orbit real-time planning technology for satellite network transmission. Mod. Electron. Tech. 2018, 41, 123–126. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Huang, D.; Li, W.; Wang, X.; Shi, X.; Xu, Q. Adaptive Network Routing Technology for Near-Moon Space Cross-Domain Transmission. Appl. Sci. 2024, 14, 10204. https://doi.org/10.3390/app142210204
Yu J, Huang D, Li W, Wang X, Shi X, Xu Q. Adaptive Network Routing Technology for Near-Moon Space Cross-Domain Transmission. Applied Sciences. 2024; 14(22):10204. https://doi.org/10.3390/app142210204
Chicago/Turabian StyleYu, Jiyang, Dan Huang, Wenjie Li, Xianjie Wang, Xiaolong Shi, and Qizhi Xu. 2024. "Adaptive Network Routing Technology for Near-Moon Space Cross-Domain Transmission" Applied Sciences 14, no. 22: 10204. https://doi.org/10.3390/app142210204
APA StyleYu, J., Huang, D., Li, W., Wang, X., Shi, X., & Xu, Q. (2024). Adaptive Network Routing Technology for Near-Moon Space Cross-Domain Transmission. Applied Sciences, 14(22), 10204. https://doi.org/10.3390/app142210204