Mechanical Sealing Method for Laboratory-Scale Hydraulic Fracturing Tests of Granite Rocks Under High-Temperature and High-Pressure Conditions
Abstract
:1. Introduction
2. Sealing Method
3. Mechanical Sealing and Thermal Expansion Sealing Mechanism
3.1. Mechanical Sealing Performance
- (1)
- Compaction response
- (2)
- Deformation of copper sealing
3.2. Thermal Expansion Sealing Mechanisms
4. Experimental Materials and Method of Sealing Rocks Under HTHP Conditions
5. Results and Discussion
5.1. Results of Hydraulic Fracturing of Granite Samples at Room Temperature
5.2. Results of Hydraulic Fracturing of Granite Samples Under High Temperatures
5.3. Hydraulic Fracture Shapes and Sealings Effect Verification
5.4. Potential Applications of the Sealing Technique
6. Conclusions
- (1)
- Before hydraulic fracturing tests, sealings in samples should be pre-tightened. A compression displacement of between 2 mm and 6 mm is suggested. The installation gap between the injection pipe and the inner surface of the seals should be less than 2.0 mm.
- (2)
- Copper is preferred for manufacturing the seal components. The tested average TEC of copper is 11.6654 μm/(m·°C). For our sealings (φ18 × 21 mm), the lateral and axial elongations increased by 0.126 mm and 0.147 mm at 600 °C, respectively.
- (3)
- The pre-tightened sealing is the controller for sealing. Heating-induced expansion of sealing is conducive to re-sealing after the mechanical sealing scenario, which is a positive effect during hydraulic fracturing tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, D.W.; Duchane, D.V.; Heiken, G.; Hriscu, V.T. Mining the Earth’s Heat: Hot Dry Rock Geothermal Energy; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Olasolo, P.; Juárez, M.; Morales, M.; Liarte, I. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, G.; Luo, T.; Jiang, Y.; Ning, S. Hydraulic fracturing in high-temperature granite characterized by acoustic emission. J. Pet. Sci. Eng. Fail. Anal. 2019, 178, 475–484. [Google Scholar] [CrossRef]
- Almubarak, T.; Li, L.; Ng, J.H.; Nasr-El-Din, H.; AlKhaldi, M. New insights into hydraulic fracturing fluids used for high-temperature wells. Pet. Geosci. 2021, 7, 70–79. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, X.; Qin, J.; Liu, P.; Aibaibu, A.; Liu, Y. Nonlinear finite element analysis on the sealing performance of rubber packer for hydraulic fracturing. J. Nat. Gas Sci. Eng. 2021, 85, 103711. [Google Scholar] [CrossRef]
- Zhai, C.; Hao, Z.; Lin, B. Research on a New Composite Sealing Material of Gas Drainage Borehole and Its Sealing Performance. Procedia Eng. 2011, 26, 1406–1416. [Google Scholar] [CrossRef]
- Kruszewski, M.; Glissner, M.; Hahn, S.; Wittig, V. Alkali-activated aluminosilicate sealing system for deep high-temperature well applications. Geothermics 2021, 89, 101935. [Google Scholar] [CrossRef]
- Dong, K.; Ni, G.; Nie, B.; Xu, Y.; Wang, G.; Sun, L.; Liu, Y. Effect of polyvinyl alcohol/aluminum microcapsule expansion agent on porosity and strength of cement-based drilling sealing material. Energy 2021, 224, 119966. [Google Scholar] [CrossRef]
- Dong, L.; Li, K.; Zhu, X.; Li, Z.; Zhang, D.; Pan, Y.; Chen, X. Study on high temperature sealing behavior of packer rubber tube based on thermal aging experiments. Eng. Fail. Anal. 2020, 108, 104321. [Google Scholar] [CrossRef]
- Wang, P.; Chen, M.; Jenkinson, J.; Song, Y.; Sun, L. Interfacial friction effects on sealing performances of elastomer packer. Pet. Sci. 2024, 21, 2037–2047. [Google Scholar] [CrossRef]
- Lan, W.; Wang, H.; Zhang, X.; Chen, S. Sealing properties and structure optimization of packer rubber under high pressure and high temperature. Pet. Sci. 2019, 16, 632–644. [Google Scholar] [CrossRef]
- Polonsky, V.L.; Tyurin, A.P. Design of Packers for Sealing of the Inter-Tube Space in Equipment used for Recovery of Oil and Gas. Chem. Pet. Eng. 2015, 51, 37–40. [Google Scholar] [CrossRef]
- Zeng, D.; Yang, X.; Zhu, D.; Zhang, Z.; Cao, D.; Chong, X.; Shi, T. Corrosion Property Testing of AFLAS Rubber under The Simulation modes of High Acid Gas Wells. Energy Procedia 2012, 16, 822–827. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z.; Zhang, Y.; Wang, Z.; Jiang, H. Experimental and Numerical Evaluation of Hydraulic Fracturing under High Temperature and Embedded Fractures in Large Concrete Samples. Water 2020, 12, 3171. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G.; Perera, M.S.A.; Li, X.; Li, L.H.; Chen, B.K.; AvanthiIsaka, B.L.; Silva, V.R.S.D. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel 2018, 230, 138–154. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Y.; Yu, Z.; Hu, Z.; Guo, L. Laboratory study of hydraulic fracturing on hot dry rock. Sci. Technol. Rev. 2015, 33, 35–39. [Google Scholar]
- Zhou, Z.; Jin, Y.; Zeng, Y.; Zhang, X.; Zhou, J.; Zhuang, L.; Xin, S. Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing. Investig. Fract. Creat. Hot Dry Rock Geotherm. Form. China Dur. Hydraul. Fract. 2020, 153, 301–313. [Google Scholar] [CrossRef]
- Frash, L.P.; Gutierrez, M.; Hampton, J. True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs. Int. J. Rock Mech. Min. Sci. 2014, 70, 496–506. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.; Guo, T.; He, J.; Zhang, L.; Che, S.; Qu, Z. Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress. Energy 2021, 221, 119886. [Google Scholar] [CrossRef]
- Zhao, Y.; Wan, Z.; Feng, Z.; Dong, Y.; Yuan, Z.; Fang, Q. Triaxial compression system for rock testing under high temperature and high pressure. Int. J. Rock Mech. Min. Sci. 2012, 52, 132–138. [Google Scholar] [CrossRef]
- Zhou, C.; Wan, Z.; Yuan, Z.; Gu, B. Experimental study on hydraulic fracturing of granite under thermal shock. Geothermics 2018, 71, 146–155. [Google Scholar] [CrossRef]
NO. | Temperature Range/°C | Rock Dimension/mm | Sealing Methods | Sample Types | Applied Stress/MPa | Ref. |
---|---|---|---|---|---|---|
1 | 20–200 | 300 × 300 × 300 | Pre-located during sample preparation | Concrete | 6~10 | [14] |
2 | 20–300 | φ22.5 × 45 | Open hole | Granite | 0–60 | [15] |
3 | 20–120 | 300 × 300 × 300 | Open hole | Granite | 10–30 | [3] |
4 | 20–150 | φ50 × 100 | Open hole | Granite | 5–10 | [16] |
5 | 20–200 | 300 × 300 × 300 | Steel casing grouted by sealant | Granite | 40 | [17] |
6 | 20–50 | 300 × 300 × 300 | Steel casing grouted by epoxy | Granite | 4.1–12.5 | [18] |
7 | 20–200 | 100 × 100 × 100 | Chemical Sealant | Granite | 5–10 | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hongwei, Z.; Zhaoying, C.; Chuanhong, Z.; Qingshuai, Y.; Xusheng, R.; Shijun, W. Mechanical Sealing Method for Laboratory-Scale Hydraulic Fracturing Tests of Granite Rocks Under High-Temperature and High-Pressure Conditions. Appl. Sci. 2024, 14, 10255. https://doi.org/10.3390/app142210255
Hongwei Z, Zhaoying C, Chuanhong Z, Qingshuai Y, Xusheng R, Shijun W. Mechanical Sealing Method for Laboratory-Scale Hydraulic Fracturing Tests of Granite Rocks Under High-Temperature and High-Pressure Conditions. Applied Sciences. 2024; 14(22):10255. https://doi.org/10.3390/app142210255
Chicago/Turabian StyleHongwei, Zhang, Chen Zhaoying, Zhou Chuanhong, Yang Qingshuai, Rui Xusheng, and Wang Shijun. 2024. "Mechanical Sealing Method for Laboratory-Scale Hydraulic Fracturing Tests of Granite Rocks Under High-Temperature and High-Pressure Conditions" Applied Sciences 14, no. 22: 10255. https://doi.org/10.3390/app142210255
APA StyleHongwei, Z., Zhaoying, C., Chuanhong, Z., Qingshuai, Y., Xusheng, R., & Shijun, W. (2024). Mechanical Sealing Method for Laboratory-Scale Hydraulic Fracturing Tests of Granite Rocks Under High-Temperature and High-Pressure Conditions. Applied Sciences, 14(22), 10255. https://doi.org/10.3390/app142210255