Chemical Composition and Antioxidant Activities of Three Bulgarian Garden Thyme Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- The experimental field of the Institute of Roses, Essential and Medical Cultures, Kazanlak (42°63′48.3″ N 25°38′85.6″ E, altitude 407 m); the thyme is cv. “German Winter”—sample 1. The soils in the area are leached cinnamon forest, developed on old diluvial deposits, structureless with good aeration and water permeability, with acidity pH 5.6 and poorly stocked with nitrogen 20.5 mg/1000 g and phosphorus 4.25 mg/100 g, but well stocked with potassium 21.75 mg/100 g, and humus content 1.8%.
- -
- The town of Yambol, Kurtkaya area (42°29′23.4″ N 26°27′56.1″ E, altitude 114 m)—sample 2. The soil cover is diverse, with chernozem resins, and alluvial-meadow soils, which are very fertile.
- -
- The village of Chargan (42°29′50.51″ N 26°35′46.81″ E, altitude 195 m), which is located in the vicinity of Yambol, near the Tundzha River—sample 3. The area is characterized by very fertile black earth and alluvial-meadow soils, which are very fertile.
2.2. Methods
2.2.1. Essential Oil Isolation
2.2.2. Antioxidant Activity
2.3. Statistical Analysis
3. Results
3.1. Chemical Composition
- -
- In total, 42 components (99.65% of the total composition) have been identified in garden thyme essential oil (sample 1). The main compounds (over 2%) were thymol (53.55%), γ-terpinene (11.13%), p-cymene (14.96%), borneol (2.75%), β-linalool (2.07%), and carvacrol (2.00%).
- -
- In total, 39 components (99.67% of the total composition) have been identified in garden thyme essential oil (sample 2). The main compounds (over 2%) were thymol (44.09%), p-cymene (25.51%), γ-terpinene (6.58%), eucalyptol (3.65%), thymol methyl ether (3.16%), β-linalool (2.31%), and carvacrol (2.33%).
- -
- In total, 38 components (99.57% of the total composition) have been identified in garden thyme essential oil (sample 3). The main compounds (over 2%) were thymol (42.88%), p-cymene (14.25%), γ-terpinene (15.51%), cis-sabinene hydrate (4.05%), borneol (3.57%), α-terpinene (3.24%), carvacrol methyl ether (3.02%), β-linalool (0.98%), and thymol methyl ether (2.26%).
3.2. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baurer, G.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials. Preparation, Properties and Uses, 4th ed.; Wiley–VCH: Weinheim, Germany; New York, NY, USA; Chichester, UK; Brisbane, Australia; Singapore; Toronto, ON, Canada, 2001. [Google Scholar]
- Başer, H.C.K.; Buchbauer, G.G. Handbook of Essential Oils: Science, Technology, and Applications, 1st ed.; Taylor and Francis Group: Boca Raton, FL, USA; LLC CRC Press: London, UK, 2010. [Google Scholar]
- Ozguven, M.; Tansi, S. Drug yield and essential oil of Thymus vulgaris L. as in influenced by ecological and ontogenetical variation. Turk. J. Agric. For. 1998, 22, 537–542. [Google Scholar]
- Hudaib, M.; Aburjai, T. Volatile components of Thymus vulgaris L. from wild-growing and cultivated plants in Jordan. Flavour Fragr. J. 2007, 22, 322–327. [Google Scholar] [CrossRef]
- Carlen, C.; Schaller, M.; Carron, C.; Vouillamoz, J.; Baroffio, C. The new Thymus vulgaris L. hybrid cultivar ‘Varico 3’ compared to five established cultivars for Germany, France and Switzerland. Acta Hortic. 2010, 860, 161–166. [Google Scholar] [CrossRef]
- Negahban, M.; Saeedfar, S. Essential oil composition of Thymus vulgaris L. Russ. J. Biol. Res. 2015, 3, 35–38. [Google Scholar] [CrossRef]
- Virchea, L.-I.; Georgescu, C.; Mironescu, M. Obtaining and characterization of volatile oils from aromatic pants. In Proceedings of the 1st International Symposium Innovations in Life Sciences (ISILS 2019), Belgorod, Russia, 10–11 October 2019; Volume 7, pp. 350–353. [Google Scholar] [CrossRef]
- Wesolowska, A.; Jadczak, D. Comparison of the chemical composition of essential oils isolated from two thyme (Thymus vulgaris L.) cultivars. Not. Bot. Horti Agrobot. 2019, 47, 829–835. [Google Scholar] [CrossRef]
- Al-Asmari, A.; Athar, M.; Al-Faraidy, A.; Almuhaiza, M. Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pac. J. Trop. Biomed. 2017, 7, 147–150. [Google Scholar] [CrossRef]
- Satyal, P.; Murray, B.; McFeeters, R.; Setzer, W. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef]
- Mancini, E.; Senatore, F.; Del Monte, D.; De Martino, L.; Grulova, D.; Scognamiglio, M.; Snoussi, M.; De Feo, V. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 2015, 20, 12016–12028. [Google Scholar] [CrossRef]
- Osuna-Ruiz, I.; López-Saiz, C.; Burgos-Hernández, A.; Velázquez, C.; Nieves-Soto, M.; Hurtado-Oliva, M. Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharm. Biol. 2016, 54, 2096–2110. [Google Scholar] [CrossRef]
- Kosakowska, O.; Bączek, K.; Przybył, J.; Pawełczak, A.; Rolewska, K.; Węglarz, Z. Morphological and chemical traits as quality determinants of common thyme (Thymus vulgaris L.), on the example of ‘Standard Winter’cultivar. Agronomy 2020, 10, 909. [Google Scholar] [CrossRef]
- Arraiza, M.; Andres, M.; Arrabal, C.; Lopez, J. Seasonal variation of essential oil yield and composition of thyme (Thymus vulgaris L.) grown in Castilla–La Mancha (Central Spain). J. Essent. Oil Res. 2009, 21, 360–362. [Google Scholar] [CrossRef]
- Lemos, M.; Lemos, M.; Pacheco, H.; Guimarães, A.; Fronza, M.; Endringer, D.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crops Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Akbari, S. Antifungal activity of Thymus vulgaris L. and Origanum vulgare L. against fluconazol-resistant and susceptible Candida albicans isolates. J. Med. Plants 2007, 6, 53–63. [Google Scholar]
- Grosso, C.; Figueiredo, A.; Burillo, J.; Mainar, A.; Urieta, J.; Barroso, J.; Palavra, A. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J. Sep. Sci. 2010, 33, 2211–2218. [Google Scholar] [CrossRef]
- El Hattabi, L.; Talbaoui, A.; Amzazi, S.; Bakri, Y.; Harhar, H.; Costa, J.; Desjobert, J.; Abyaoui, M. Chemical composition and antibacterial activity of three essential oils from south of Morocco (Thymus satureoides, Thymus vulgaris and Chamaelum nobilis). J. Mater. Environ. Sci. 2016, 7, 3110–3117. [Google Scholar]
- Baj, T.; Brienasiuk, A.; Wrobel, R.; Malm, A. Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thumus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata. Open Chem. 2020, 18, 108–118. [Google Scholar] [CrossRef]
- Rota, M.; Herrera, A.; Martínez, R.; Sotomayor, J.; Jordán, M. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Loizzo, M.; Menichini, F.; Conforti, F.; Tundis, R.; Bonesi, M.; Saab, A.; Statti, G.; Cindio, B.; Houghton, P.; Menichini, F.; et al. Chemical analysis, antioxidant, antiiflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss. and Origanum syriacum L. essential oils. Food Chem. 2009, 117, 174–180. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Megías, C.; Cortes-Giraldo, I.; Vioque, J.; Figueiredo, C.; Miguel, M. Anti-oxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial essential oils. Nat. Prod. Commun. 2014, 9, 587–594. [Google Scholar] [CrossRef]
- Nikolić, M.; Glamočlija, J.; Ferreira, C.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crop Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Gavaric, N.; Mozina, S.; Kladar, N.; Bozin, B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil-Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Cutillas, A.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef]
- Galgano, M.; Pellegrini, F.; Mrenoshki, D.; Capozza, P.; Omar, A.; Salvaggiulo, A.; Camero, M.; Lanave, G.; Tempesta, M.; Pratelli, A.; et al. Assessing contact time and concentration of Thymus vulgaris essential oil on antibacterial efficacy in vitro. Antibiotics 2023, 12, 1129. [Google Scholar] [CrossRef]
- Kulisic, T.; Radonic, A.; Milos, M. Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) essential oils. Ital. J. Food Sci. 2005, 17, 315. [Google Scholar]
- Stoilova, I.; Bail, S.; Buchbauer, G.; Krastanov, A.; Stoyanova, A.; Schmidt, E.; Jirovetz, L. Chemical composition, olfactory evaluation and antioxidant effects of an essential oil of Thymus vulgaris L. from Germany. Nat. Prod. Commun. 2008, 3, 1047–1050. [Google Scholar] [CrossRef]
- Schmidt, E.; Wanner, J.; Hoeferl, M.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanil/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 2012, 7, 1095–1098. [Google Scholar] [CrossRef]
- Aljabeili, H.; Barakat, H.; Abdel-Rahman, H. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Nutr. Sci. 2018, 9, 433–446. [Google Scholar] [CrossRef]
- Aprotosoaie, A.; Miron, A.; Ciocârlan, N.; Brebu, M.; Rosu, C.; Trifan, A.; Vochita, G.; Gherghel, D.; Luca, S.; Nită, A.; et al. Essential oils of Moldavian Thymus species: Chemical composition, antioxidant, anti-Aspergillus and antigenotoxic activities. Flavour Fragr. J. 2019, 34, 175–186. [Google Scholar] [CrossRef]
- Gedikoglu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Catalkaya, G.; Capanoglu, E.; Karbancioglu-Guler, F. Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Front. 2021, 2, 508–518. [Google Scholar] [CrossRef]
- Laftouhi, A.; Slimani, M.; Elrherabi, A.; Bouhrim, M.; Mahraz, M.; Idrissi, A.; Eloutassi, N.; Rais, Z.; Taleb, A.; Taleb, M. Effect of temperature and water stress on the antioxidant and antidiabetic activities of Thymus vulgaris essential oil. Trop. J. Nat. Prod. Res. 2024, 8, 5785–5793. [Google Scholar]
- Tohidi-Nejad, Z.; Khajoei-Nejad, G.; Tohidi-Nejad, E.; Ghanbari, J. Essential oil production, chemical composition, bioactive compounds, and antioxidant activity of Thymus vulgaris as affected by harvesting season and drying conditions. Dry Technol. 2024, 42, 1208–1220. [Google Scholar] [CrossRef]
- Wirtu, S.; Ramaswamy, K.; Maitra, R.; Chopra, S.; Mishra, A.; Tesfaye Jule, L. Isolation, characterization and antimicrobial activity study of Thymus vulgaris. Sci. Rep. 2024, 14, 21573. [Google Scholar] [CrossRef]
- Rua, J.; del Valle, P.; de Arriaga, D.; Fernandez-Alvarez, L.; Garcıa-Armesto, M. Combination of carvacrol and thymol: Antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Esmaeili, A.; Khodadadi, A. Antioxidant activity of a solution of thymol in ethanol. Zahedan J. Res. Med. Sci. 2012, 14, 14–18. [Google Scholar]
- Jannati, N.; Gharachorloo, M.; Honarvar, M. Extraction of thymol compound from Thymus vulgaris L. oil. J. Med. Plants Byprod. 2021, 10, 81–84. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Do Nascimento, L.; de Moraes, A.; da Costa, K.; Galúcio, J.; Taube, P.; Costa, C.; Cruz, J.; de Aguiar, E.; Andrade, E.; de Faria, L. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Dauqan, A.; Abdullah, A. Medicinal and functional values of thyme (Thymus vulgaris L.) herb. J. Appl. Biol. Biotechnol. 2017, 5, 17–22. [Google Scholar] [CrossRef]
- Galovicová, L.; Borotová, P.; Valková, V.; Vukovic, N.; Vukic, M.; Štefániková, J.; Dúranová, H.; Kowalczewski, P.; Cmiková, N.; Kacániová, M. Thymus vulgaris essential oil and its biological activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef] [PubMed]
- Yankulov, Y.; Stoeva, T.; Taleva, R. Citral thyme cultivar “Slava”. Agriculture 1990, 90, 43–44. [Google Scholar]
- Yankulov, Y. Common thyme of the “Slava” cultivar. Agriculture 1993, 91, 9. [Google Scholar]
- Zhekova, G. New aromatic products from two varieties of thyme (Thymus vulgaris) for use in the food industry and cosmetics. Food Ind. 2012, 61, 31–36. [Google Scholar]
- Stoyanova, A. A Guide for the Specialist in the Aromatic Industry; Bulgarian National Association of Essential Oils, Perfumery and Cosmetics: Plovdiv, Bulgaria, 2022. [Google Scholar]
- Fidan, H.; Lazarov, A.; Petkova, N.; Stankov, S.; Dincheva, I.; Gandova, V.; Stoyanova, A.; Koleva, Y. Chemical composition of essential oil from Thymus serpyllum L. and its antimicrobial and antioxidant activity. Oxid. Commun. 2023, 46, 587–599. [Google Scholar]
- Gandova, V.; Lazarov, A.; Stoyanova, A. Influence of the surface tension of teas on the temperature and addition of common thyme and summer savory essential oils. In BIO Web of Conferences; EDP Sciences: Paris, France, 2024; Volume 122, p. 01005. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 20th ed.; AOAC International: Geithersburg, MD, USA, 2016. [Google Scholar]
- Balinova, A.; Diakov, G. On improved apparatus for microdistillation of rose flowers. Plant Sci. 1974, 11, 77–85. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Ivanov, I.; Vrancheva, R.; Marchev, A.; Petkova, N.; Aneva, I.; Denev, P.; Georgiev, V.; Pavlov, A. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Raffo, A.; Sapienza, F.U.; Astolfi, R.; Lombardi, G.; Fraschetti, C.; Božović, M.; Artini, M.; Papa, R.; Trecca, M.; Fiorentino, S.; et al. Effect of different soil treatments on production and chemical composition of essential oils extracted from Foeniculum vulgare Mill., Origanum vulgare L. and Thymus vulgaris L. Plants 2023, 12, 2835. [Google Scholar] [CrossRef]
- Goal, S.; Parhak, R.; Pandey, H.; Kumari, A.; Tewari, G.; Bhadari, N.; Bala, M. Comparative study of the volatile constituents of Thymus serpyllum L. grown at different altitudes of Western Himalayas. Appl. Sci. 2020, 2, 1208. [Google Scholar] [CrossRef]
- Ahlgren, C.; Axéll, T.; Möller, H.; Isaksson, M.; Liedholm, R.; Bruze, M. Contact allergies to potential allergens in patients with oral lichen lesions. Clin. Oral. Investig. 2014, 18, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Bråred-Christensson, J.; Hagvall, L.; Karlberg, A.-T. Fragrance allergens, overview with a focus on recent developments and understanding of abiotic and biotic activation. Cosmetics 2016, 3, 19. [Google Scholar] [CrossRef]
- Nath, N.; Liu, B.; Green, C.; Atwater, A. Contact allergy to hydroperoxides of linalool and D-limonene in a US population. Dermatitis 2017, 28, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/1545 of 26 July 2023 Amending Regulation (EC) No 1223/2009 of the European Parliament and of the Council as Regards the Labelling of Aromatic Allergens in Cosmetic Products. Available online: https://eur-lex.europa.eu/eli/reg/2023/1545/oj (accessed on 9 March 2024).
- Deng, L.; Taxipalati, M.; Que, F.; Zhang, H. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles. Sci. Rep. 2016, 6, 38160. [Google Scholar] [CrossRef]
- Vergun, O.; Svydenko, L.; Grygorieva, O.; Sedláčková, V.; Šramková, K.; Ivanišová, E.; Brindza, J. Polyphenol component and antioxidant activity of Thymus spp. Potravin. Slovak J. Food Sci. 2022, 16, 1–14. [Google Scholar] [CrossRef]
- Boruga, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Chen, X.; Shang, S.; Yan, F.; Jiang, H.; Zhao, G.; Tian, S.; Chen, R.; Chen, D.; Dang, Y. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress. Molecules 2023, 28, 4559. [Google Scholar] [CrossRef]
No | RT b, min | RI c | Components | Content | ||
---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | ||||
1. | 6.46 | 840 | trans-2-Hexenal | 0.07 ± 0.0 a | nd d | 0.06 ± 0.0 a |
2. | 8.44 | 917 | Tricyclene | 0.05 ± 0.0 a | 0.06 ± 0.0 a | 0.08 ± 0.0 a |
3. | 8.60 | 922 | β-Thujene | 0.68 ± 0.0 a | 0.59 ± 0.0 a | 0.81 ± 0.0 a |
4. | 8.81 | 929 | α-Pinene | 0.46 ± 0.0 a | 0.37 ± 0.0 a | 0.38 ± 0.0 a |
5. | 9.32 | 945 | Camphene | 0.59 ± 0.0 a | 0.34 ± 0.0 a | 0.46 ± 0.0 a |
6. | 10.10 | 970 | Sabinene | 0.08 ± 0.0 a | 0.07 ± 0.0 a | 0.15 ± 0.0 b |
7. | 10.22 | 974 | β-Pinene | 0.16 ± 0.0 a | 0.20 ± 0.0 a | 0.17 ± 0.0 a |
8. | 10.45 | 981 | 1-Octen-3-ol | 0.35 ± 0.0 a | 0.52 ± 0.0 a | 1.01 ± 0.01 b |
9. | 10.58 | 985 | 3-Octanone | 0.08 ± 0.0 a | 0.06 ± 0.0 a | 0.35 ± 0.0 b |
10. | 10.70 | 988 | β-Myrcene | 0.89 ± 0.0 a | 0.70 ± 0.0 a | 0.54 ± 0.0 a |
11. | 11.01 | 981 | 3-Octanol | 0.07 ± 0.0 a | 0.06 ± 0.0 a | 0.16 ± 0.0 ab |
12. | 11.18 | 1004 | α-Phellandrene | 0.15 ± 0.0 a | 0.09 ± 0.0 a | 0.17 ± 0.0 a |
13. | 11.25 | 1006 | delta-3-Carene | 0.07 ± 0.0 a | 0.09 ± 0.0 a | 0.06 ± 0.0 a |
14. | 11.54 | 1015 | α-Terpinene | 1.37 ± 0.01 a | 1.01 ± 0.01 a | 3.24 ± 0.03 b |
15. | 11.87 | 1023 | p-Cymene | 14.96 ± 0.13 a | 25.51 ± 0.24 b | 14.25 ± 0.13 a |
16. | 11.96 | 1027 | α-Limonene | 0.29 ± 0.0 a | 0.23 ± 0.0 a | 0.26 ± 0.0 a |
17. | 12.03 | 1033 | Eucalyptol | 1.08 ± 0.01 a | 3.65 ± 0.03 b | 1.62 ± 0.01 ac |
18. | 12.54 | 1035 | trans-β-Ocimene | 0.04 ± 0.0 a | 0.01 ± 0.0 a | 0.04 ± 0.0 a |
19. | 12.95 | 1057 | γ-Terpinene | 11.13 ± 0.01 a | 6.58 ± 0.06 b | 15.51 ± 0.14 a |
20. | 13.28 | 1069 | cis-Sabinene hydrate | 1.36 ± 0.01 a | 1.82 ± 0.01 a | 4.05 ± 0.03 b |
21. | 13.72 | 1083 | Terpinolene | 0.06 ± 0.0 a | 0.09 ± 0.0 a | 0.14 ± 0.0 b |
22. | 14.25 | 1099 | β-Linalool | 2.07 ± 0.0 a | 2.31 ± 0.02 a | 0.98 ± 0.0 b |
23. | 14.57 | 1105 | trans-Sabinene hydrate | 0.16 ± 0.0 a | 0.19 ± 0.0 a | 0.14 ± 0.0 a |
24. | 15.86 | 1145 | Camphor | 0.08 ± 0.0 a | 0.03 ± 0.0 a | 0.03 ± 0.0 a |
25. | 15.95 | 1150 | trans-Verbenol | 0.08 ± 0.0 a | nd d | 0.08 ± 0.0 a |
26. | 16.38 | 1171 | Borneol | 2.75 ± 0.0 a | 1.41 ± 0.01 b | 3.57 ± 0.03 c |
27. | 16.64 | 1180 | Terpinen-4-ol | 0.35 ± 0.0 a | 0.35 ± 0.0 a | 0.60 ± 0.0 b |
28. | 17.32 | 1195 | α-Terpineol | 0.16 ± 0.0 a | 0.47 ± 0.0 b | 0.27 ± 0.0 c |
29. | 18.04 | 1228 | Thymol methyl ether | 1.03 ± 0.01 a | 3.16 ± 0.03 b | 2.26 ± 0.02 c |
30. | 18.31 | 1237 | Carvacrol methyl ether | 1.24 ± 0.01 a | 1.18 ± 0.01 b | 3.02 ± 0.0 c |
31. | 18.75 | 1240 | Neral | 0.09 ± 0.0 a | 0.08 ± 0.0 a | nd |
32. | 19.74 | 1270 | Geranial | 0.06 ± 0.0 | nd d | nd |
33. | 20.11 | 1293 | Thymol | 53.55 ± 0.50 a | 44.09 ± 0.43 b | 42.88 ± 0.40 b |
34. | 20.21 | 1300 | Carvacrol | 2.00 ± 0.01 a | 2.33 ± 0.02 a | 0.73 ± 0.0 b |
35. | 21.27 | 1350 | Thymyl acetate | 0.22 ± 0.0 a | 0.12 ± 0.0 b | 0.09 ± 0.0 b |
36. | 23.19 | 1420 | β-Caryophyllene | 0.98 ± 0.0 a | 0.77 ± 0.0 a | 0.88 ± 0.0 a |
37. | 24.44 | 1472 | Geranyl propanoate | 0.05 ± 0.0 a | 0.05 ± 0.0 a | nd |
38. | 24.73 | 1480 | Germacrene D | 0.12 ± 0.0 a | 0.16 ± 0.0 a | 0.24 ± 0.0 b |
39. | 25.51 | 1512 | γ-Cadinene | 0.07 ± 0.0 a | 0.09 ± 0.0 a | 0.08 ± 0.0 a |
40. | 25.63 | 1517 | δ-Cadinene | 0.07 ± 0.0 a | 0.09 ± 0.0 a | 0.05 ± 0.0 a |
41. | 27.15 | 1581 | Caryophyllene oxide | 0.29 ± 0.0 a | 0.71 ± 0.0 b | 0.17 ± 0.0 c |
42. | 28.53 | 1641 | tau-Cadinol | 0.24 ± 0.0 a | 0.05 ± 0.0 b | nd |
Values | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
DPPH, mM TE/g | 165.91 ± 1.50 a | 144.93 ± 1.33 b | 143.20 ± 1.32 b |
ABTS, mM TE/g | 127.65 ± 1.20 a | 126.99 ± 1.22 a | 121.68 ± 1.20 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobreva, K.; Dimov, M.; Valev, T.; Iliev, I.; Damyanova, S.; Oprea, O.B.; Stoyanova, A. Chemical Composition and Antioxidant Activities of Three Bulgarian Garden Thyme Essential Oils. Appl. Sci. 2024, 14, 10261. https://doi.org/10.3390/app142210261
Dobreva K, Dimov M, Valev T, Iliev I, Damyanova S, Oprea OB, Stoyanova A. Chemical Composition and Antioxidant Activities of Three Bulgarian Garden Thyme Essential Oils. Applied Sciences. 2024; 14(22):10261. https://doi.org/10.3390/app142210261
Chicago/Turabian StyleDobreva, Krasimira, Milen Dimov, Tsvetan Valev, Ivan Iliev, Stanka Damyanova, Oana Bianca Oprea, and Albena Stoyanova. 2024. "Chemical Composition and Antioxidant Activities of Three Bulgarian Garden Thyme Essential Oils" Applied Sciences 14, no. 22: 10261. https://doi.org/10.3390/app142210261
APA StyleDobreva, K., Dimov, M., Valev, T., Iliev, I., Damyanova, S., Oprea, O. B., & Stoyanova, A. (2024). Chemical Composition and Antioxidant Activities of Three Bulgarian Garden Thyme Essential Oils. Applied Sciences, 14(22), 10261. https://doi.org/10.3390/app142210261