Quantitative Assessment of the Effect of Instability Levels on Reactive Human Postural Control Using Different Sensory Organization Strategies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Baseline Balance Assessment
2.3. Sensory Integration
- Eyes open, firm surface: This condition, hereafter referred to as “Basic”, provides the individual with full visual, proprioceptive, and vestibular information, enabling them to rely on all three sensory systems to maintain balance.
- Eyes closed, firm surface: In this condition, referred to as “Visual”, visual input is eliminated, forcing the individual to rely primarily on proprioceptive and vestibular information for balance.
- Eyes open, foam surface: This condition, referred to as “Proprioception”, challenges the individual’s proprioceptive system by providing an unstable surface while still allowing access to visual and vestibular information.
- Eyes closed, foam surface: This condition, referred to as “Vestibular”, presents the greatest challenge to the individual, as both visual and reliable proprioceptive inputs are removed, leaving only the vestibular system to maintain balance.
2.4. Instability Levels
2.5. Postural Control Testing
2.6. Motion Capture
2.7. Data Analysis
2.8. Statistical Analysis
3. Results
3.1. Baseline Balance
3.2. Effects of Instability Level and Sensory Information on Movement Characteristics
3.2.1. Chest Movement Velocity
3.2.2. Chest Movement 95th CI Ellipsoid Volume
3.3. Differences Between Different Levels of Instability Across Various Sensory Strategies
3.4. The Sequential Relationship Between Chest Movement Velocity and 95th CI Ellipsoid Volume
4. Discussion
4.1. Potential Application for Postural Control Training and Rehabilitation
4.2. Potential Application for Postural Control Assessment
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stability, D.; Adaptive, D.; Locomotion, H. Strategies for Dynamic Stability During Adaptive Human Locomotion. IEEE Eng. Med. Biol. Mag. 2003, 22, 48–52. [Google Scholar]
- Freyler, K.; Gollhofer, A.; Colin, R.; Brüderlin, U.; Ritzmann, R. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses. PLoS ONE 2015, 10, e0144529. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Alotaibi, A.Z.; Iqbal, Z.A. Postural Stability in People with Visual Impairment. Brain Behav. 2019, 9, e01436. [Google Scholar] [CrossRef] [PubMed]
- Barollo, F.; Hassan, M.; Petersen, H.; Rigoni, I.; Ramon, C.; Gargiulo, P.; Fratini, A. Cortical Pathways During Postural Control: New Insights From Functional EEG Source Connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E.; McIlroy, W.E. Cognitive Demands and Cortical Control of Human Balance-Recovery Reactions. J. Neural Transm. 2007, 114, 1279–1296. [Google Scholar] [CrossRef]
- Feldman, A.G. The Relationship Between Postural and Movement Stability. In Progress in Motor Control: Theories and Translations; Laczko, J., Latash, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 105–120. ISBN 978-3-319-47313-0. [Google Scholar]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age. Community Health 2007, 53. [Google Scholar]
- Horak, F.B.; Henry, S.M.; Shumway-Cook, A. Postural Perturbations: New Insights for Treatment of Balance Disorders. Phys. Ther. 1997, 77, 517–533. [Google Scholar] [CrossRef]
- Hamed, A.; Bohm, S.; Mersmann, F.; Arampatzis, A. Exercises of Dynamic Stability under Unstable Conditions Increase Muscle Strength and Balance Ability in the Elderly. Scand. J. Med. Sci. Sports 2018, 28, 961–971. [Google Scholar] [CrossRef]
- Nardone, A.; Godi, M.; Artuso, A.; Schieppati, M. Balance Rehabilitation by Moving Platform and Exercises in Patients with Neuropathy or Vestibular Deficit. Arch. Phys. Med. Rehabil. 2010, 91, 1869–1877. [Google Scholar] [CrossRef]
- Hall, C.D.; Herdman, S.J.; Whitney, S.L.; Anson, E.R.; Carender, W.J.; Hoppes, C.W.; Cass, S.P.; Christy, J.B.; Cohen, H.S.; Fife, T.D.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline From the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J. Neurol. Phys. Ther. 2022, 46, 118–177. [Google Scholar] [CrossRef]
- Arienti, C.; Lazzarini, S.G.; Pollock, A.; Negrini, S. Rehabilitation Interventions for Improving Balance Following Stroke: An Overview of Systematic Reviews. PLoS ONE 2019, 14, e0219781. [Google Scholar] [CrossRef] [PubMed]
- Gschwind, Y.J.; Kressig, R.W.; Lacroix, A.; Muehlbauer, T.; Pfenninger, B.; Granacher, U. A Best Practice Fall Prevention Exercise Program to Improve Balance, Strength/Power, and Psychosocial Health in Older Adults: Study Protocol for a Randomized Controlled Trial. BMC Geriatr. 2013, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Haeger, M.; Bock, O.; Memmert, D.; Hüttermann, S. Can Driving-Simulator Training Enhance Visual Attention, Cognition, and Physical Functioning in Older Adults? J. Aging Res. 2018, 2018, 7547631. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.W.; Bhattacharyya, N. Balance Disorders in the Elderly: Epidemiology and Functional Impact. Laryngoscope 2012, 122, 1858–1861. [Google Scholar] [CrossRef]
- McCaskey, M.A.; Wirth, B.; Schuster-Amft, C.; De Bruin, E.D. Postural Sensorimotor Training versus Sham Exercise in Physiotherapy of Patients with Chronic Non-Specific Low Back Pain: An Exploratory Randomised Controlled Trial. PLoS ONE 2018, 13, e0193358. [Google Scholar] [CrossRef]
- Boeer, J.; Mueller, O.; Krauss, I.; Haupt, G.; Axmann, D.; Horstmann, T. Effects of a Sensory-Motor Exercise Program for Older Adults with Osteoarthritis or Prosthesis of the Hip Using Measurements Made by the Posturomed Oscillatory Platform. J. Geriatr. Phys. Ther. 2010, 33, 10–15. [Google Scholar]
- Akizuki, K.; Echizenya, Y.; Kaneno, T.; Ohashi, Y. Usefulness of an Unstable Board Balance Test to Accurately Identify Community-Dwelling Elderly Individuals with a History of Falls. J. Rehabil. Med. 2019, 51, 71–76. [Google Scholar] [CrossRef]
- Forth, K.E.; Taylor, L.C.; Paloski, W.H. The Effect of Sensory Noise Created by Compliant and Sway-Referenced Support Surfaces on Postural Stability. 2006; Preprint. Available online: https://ntrs.nasa.gov/citations/20060026427 (accessed on 5 November 2024).
- Chimera, N.J.; Smith, C.A.; Warren, M. Injury History, Sex, and Performance on the Functional Movement Screen and Y Balance Test. J. Athl. Train. 2015, 50, 475–485. [Google Scholar] [CrossRef]
- Wilson, B.R.; Robertson, K.E.; Burnham, J.M.; Yonz, M.C.; Ireland, M.L.; Noehren, B. The Relationship between Hip Strength and the Y Balance Test. J. Sport Rehabil. 2018, 27, 445–450. [Google Scholar] [CrossRef]
- Smith, C.A.; Chimera, N.J.; Warren, M. Association of Y Balance Test Reach Asymmetry and Injury in Division I Athletes. Med. Sci. Sports Exerc. 2015, 47, 136–141. [Google Scholar] [CrossRef]
- Bulow, A.; Anderson, J.E.; Leiter, J.R.; Macdonald, P.B.; Peeler, J. The Modified Star Excursion Balance and Y-Balance Test Results Differ When Assessing Physically Active Healthy Adolescent Females. Int. J. Sports Phys. Ther. 2019, 14, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Goble, D.J.; Brar, H.; Brown, E.C.; Marks, C.R.; Baweja, H.S. Normative Data for the Balance Tracking System Modified Clinical Test of Sensory Integration and Balance Protocol. Med. Devices: Evid. Res. 2019, 12, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Gudziunas, V.; Domeika, A.; Puodžiukynas, L.; Gustiene, R. Quantitative Assessment of the Level of Instability of a Single-Plane Balance Platform. Technol. Health Care 2022, 30, 291–307. [Google Scholar] [CrossRef]
- Plisky, P.; Schwartkopf-Phifer, K.; Huebner, B.; Garner, M.B.; Bullock, G. Systematic Review and Meta-Analysis of the y-Balance Test Lower Quarter: Reliability, Discriminant Validity, and Predictive Validity. Int. J. Sports Phys. Ther. 2021, 16, 1190–1209. [Google Scholar] [CrossRef]
- Lai, W.C.; Wang, D.; Chen, J.B.; Vail, J.; Rugg, C.M.; Hame, S.L. Lower Quarter Y-Balance Test Scores and Lower Extremity Injury in NCAA Division i Athletes. Orthop. J. Sports Med. 2017, 5, 1–5. [Google Scholar] [CrossRef]
- Patel, S.I. A Study to Estimate the Normative Data of Functional Reach Test in Elderly Individuals. Master’s thesis, Rajiv Gandhi University of Health Sciences, Bengaluru, India, 2010. [Google Scholar]
- Erkrankungen, N.; Vorgelegt Von Kormeier, S. Der Functional-Reach-Test in Einer Kohorte von 1100 Personen Mit Und Ohne Risikofaktoren Für Neurodegeneration: Einflussfaktoren, Cut-off-Werte Und Assoziation. Doctoral dissertation, Universität Tübingen, Tübingen, Germany, 2022. [Google Scholar]
- El-Kahky, A.M.; Kingma, H.; Dolmans, M.; de Jong, I. Balance Control near the Limit of Stability in Various Sensory Conditions in Healthy Subjects and Patients Suffering from Vertigo or Balance Disorders: Impact of Sensory Input on Balance Control. Acta Otolaryngol. 2000, 120, 508–516. [Google Scholar] [CrossRef]
- Surgent, O.J.; Dadalko, O.I.; Pickett, K.A.; Travers, B.G. Balance and the Brain: A Review of Structural Brain Correlates of Postural Balance and Balance Training in Humans. Gait Posture 2019, 71, 245–252. [Google Scholar] [CrossRef]
- Steinberg, N.; Elias, G.; Zeev, A.; Witchalls, J.; Waddington, G. The Function of the Proprioceptive, Vestibular and Visual Systems Following Fatigue in Individuals With and Without Chronic Ankle Instability. Percept Mot Ski. 2023, 130, 239–259. [Google Scholar] [CrossRef]
- Kim, S.; Horak, F.B.; Carlson-Kuhta, P.; Park, S. Postural Feedback Scaling Deficits in Parkinson’s Disease. J. Neurophysiol. 2009, 102, 2910–2920. [Google Scholar] [CrossRef]
- Akay, T.; Murray, A.J. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int. J. Mol. Sci. 2021, 22, 1467. [Google Scholar] [CrossRef]
- Takakusaki, K.; Takahashi, M.; Obara, K.; Chiba, R. Neural Substrates Involved in the Control of Posture. Adv. Robot. 2017, 31, 2–23. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, J.; Habik Tatarowska, N.; Mierzwa Molenda, M. Deficits of Sensory Integration and Balance as Well as Scoliotic Changes in Young Schoolgirls. Sensors 2023, 23, 1172. [Google Scholar] [CrossRef] [PubMed]
- Appeadu, M.K.; Gupta, V. Postural Instability. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
ILs | Basic | Visual | Proprioception | Vestibular | |
---|---|---|---|---|---|
SIS | |||||
0 IL | 1 | 2 | 3 | 4 | |
1 IL | 5 | 6 | 7 | 8 | |
2 IL | 9 | 10 | 11 | 12 | |
3 IL | 13 | 14 | 15 | 16 |
SIS | 0 IL | 1 IL | 2 IL | 3 IL | |||||
---|---|---|---|---|---|---|---|---|---|
IL | Median | IQR | Median | IQR | Median | IQR | Median | IQR | |
Basic | 0.78 | 0.21 | 0.88 | 0.18 | 1.07 | 0.32 | 0.98 | 0.28 | |
Visual | 0.86 | 0.23 | 1.08 | 0.46 | 2.20 | 2.33 | 1.93 | 0.95 | |
Proprioception | 1.20 | 0.18 | 1.22 | 0.36 | 1.46 | 0.44 | 1.54 | 0.35 | |
Vestibular | 2.00 | 0.50 | 2.95 | 0.93 | 4.19 | 1.77 | 4.53 | 1.87 |
SIS | 0 IL | 1 IL | 2 IL | 3 IL | |||||
---|---|---|---|---|---|---|---|---|---|
IL | Median | IQR | Median | IQR | Median | IQR | Median | IQR | |
Basic | 179.5 | 261.7 | 561.5 | 551.8 | 771.6 | 833.6 | 692.9 | 855.7 | |
Visual | 186.1 | 188.7 | 653.5 | 683.6 | 3213.8 | 7806.3 | 2645.0 | 3163.6 | |
Proprioception | 855.7 | 726.5 | 1354.4 | 1117.9 | 1725.0 | 1389.9 | 1784.7 | 2104.5 | |
Vestibular | 1880.0 | 1633.2 | 4604.4 | 6535.5 | 9729.0 | 12,599.6 | 12,917.0 | 23,512.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudžiūnas, V.; Domeika, A.; Ylaitė, B.; Daublys, D.; Puodžiukynas, L. Quantitative Assessment of the Effect of Instability Levels on Reactive Human Postural Control Using Different Sensory Organization Strategies. Appl. Sci. 2024, 14, 10311. https://doi.org/10.3390/app142210311
Gudžiūnas V, Domeika A, Ylaitė B, Daublys D, Puodžiukynas L. Quantitative Assessment of the Effect of Instability Levels on Reactive Human Postural Control Using Different Sensory Organization Strategies. Applied Sciences. 2024; 14(22):10311. https://doi.org/10.3390/app142210311
Chicago/Turabian StyleGudžiūnas, Vaidotas, Aurelijus Domeika, Berta Ylaitė, Donatas Daublys, and Linas Puodžiukynas. 2024. "Quantitative Assessment of the Effect of Instability Levels on Reactive Human Postural Control Using Different Sensory Organization Strategies" Applied Sciences 14, no. 22: 10311. https://doi.org/10.3390/app142210311
APA StyleGudžiūnas, V., Domeika, A., Ylaitė, B., Daublys, D., & Puodžiukynas, L. (2024). Quantitative Assessment of the Effect of Instability Levels on Reactive Human Postural Control Using Different Sensory Organization Strategies. Applied Sciences, 14(22), 10311. https://doi.org/10.3390/app142210311