Application of the Gait Kinematics Index in Patients with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Testing
2.3. Data Processing
2.4. Calculation of Gait Indicators
2.5. Statistical Analysis
3. Results
3.1. Index Analysis of Gait in Children Without Motor System Dysfunctions
3.2. Index Analysis of Gait in Patients with CP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Prim. 2016, 2, 15082. [Google Scholar] [CrossRef] [PubMed]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jetté, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Krägeloh-Mann, I.; Cans, C. Cerebral palsy update. Brain Dev. 2009, 39, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Colver, A.; Fairhurst, C.; Pharoah, P.O.D. Cerebral palsy. Lancet 2014, 383, 1240–1249. [Google Scholar] [CrossRef]
- Dobson, F.; Morris, M.E.; Baker, R.; Graham, H.K. Unilateral cerebral palsy: A population-based study of gait and motor function. Dev. Med. Child Neurol. 2011, 53, 429–435. [Google Scholar] [CrossRef]
- Dobson, F.; Morris, M.E.; Baker, R.; Graham, H.K. Gait classification in children with cerebral palsy: A systematic review. Gait Posture 2007, 25, 140–152. [Google Scholar] [CrossRef]
- Wren, T.A.; Rethlefsen, S.; Kay, R.M. Prevalence of specific gait abnormalities in children with cerebral palsy: Influence of cerebral palsy subtype, age, and previous surgery. J. Pediatr. Orthop. 2005, 25, 79–83. [Google Scholar]
- Wood, E. The Child with Cerebral Palsy: Diagnosis and Beyond. Semin. Pediatr. Neurol. 2006, 13, 286–296. [Google Scholar] [CrossRef]
- Albright, A.L.; Ferson, S.S. Intrathecal baclofen therapy in children. Neurosurg. Focus 2006, 21, E3–E6. [Google Scholar] [CrossRef]
- Dudley, R.W.R.; Parolin, M.; Gagnon, B.; Saluja, R.; Yap, R.; Montpetit, K.; Ruck, J.; Poulin, C.; Cantin, M.-A.; Benaroch, T.E.; et al. Long-term functional benefits of selective dorsal rhizotomy for spastic cerebral palsy. J. Neurosurg. Pediatr. 2013, 12, 142–150. [Google Scholar] [CrossRef]
- Graubert, C.; Song, K.M.; McLaughlin, J.F.; Bjornson, K.F. Changes in gait at 1 year post-selective dorsal rhizotomy: Results of a prospective randomized study. J. Pediatr. Orthop. 2000, 20, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Hoving, M.A.; van Raak, E.P.; Spincemaille, G.H.; Palmans, L.J.; Becher, J.G.; Vles, J.S. Efficacy of intrathecal baclofen therapy in children with intractable spastic cerebral palsy: A randomised controlled trial. Eur. J. Paediatr. Neurol. 2009, 13, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Park, T.S.; Johnston, J.M. Surgical techniques of selective dorsal rhizotomy for spastic cerebral palsy. Neurosurg. Focus 2006, 21, E7. [Google Scholar] [CrossRef] [PubMed]
- Steinbok, P. Selection of treatment modalities in children with spastic cerebral palsy. Neurosurg. Focus 2006, 21, E4. [Google Scholar] [CrossRef]
- van Schie, P.E.M.; Schothorst, M.; Dallmeijer, A.J.; Vermeulen, R.J.; van Ouwerkerk, W.J.R.; Strijers, R.L.M.; Becher, J.G. Short- and long-term effects of selective dorsal rhizotomy on gross motor function in ambulatory children with spastic diplegia. J. Neurosurg. Pediatr. 2011, 7, 557–562. [Google Scholar] [CrossRef]
- Tsitlakidis, S.; Horsch, A.; Schaefer, F.; Westhauser, F.; Goetze, M.; Hagmann, S.; Klotz, M.C.M. Gait Classification in Unilateral Cerebral Palsy. J. Clin. Med. 2019, 8, 1652. [Google Scholar] [CrossRef]
- Tsitlakidis, S.; Schwarze, M.; Westhauser, F.; Heubisch, K.; Horsch, A.; Hagmann, S.; Wolf, S.I.; Götze, M. Gait Indices for Characterization of Patients with Unilateral Cerebral Palsy. J. Clin. Med. 2020, 9, 3888. [Google Scholar] [CrossRef] [PubMed]
- Ammann-Reiffer, C.; Bastiaenen, C.H.G.; Klöti, C.; Van Hedel, H.J.A. Concurrent Validity of Two Gait Performance Measures in Children with Neuromotor Disorders. Phys. Occup. Ther. Pediatr. 2019, 39, 181–192. [Google Scholar] [CrossRef]
- Gouelle, A.; Mégrot, F.; Presedo, A.; Husson, I.; Yelnik, A.; Penneçot, G.-F. The gait variability index: A new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait Posture 2013, 38, 461–465. [Google Scholar] [CrossRef]
- Haley, S.M.; Coster, W.J.; Kao, Y.-C.; Dumas, H.M.; Fragala-Pinkham, M.A.; Kramer, J.M.; Ludlow, L.H.; Moed, R. Lessons from Use of Pediatric Evaluation of Disability Inventory (PEDI): Where Do We Go From Here? Pediatr. Phys. Ther. J. 2010, 22, 69–75. [Google Scholar] [CrossRef]
- Rutkowska-Kucharska, A.; Kowal, M.; Winiarski, S. Relationship between asymmetry of gait and muscle torque in patients after unilateral transfemoral amputation. Appl. Bionics Biomech. 2018, 2018, 5190816. [Google Scholar] [CrossRef] [PubMed]
- Jochymczyk-Woźniak, K.; Nowakowska-Lipiec, K.; Zadoń, H.; Wolny, S.; Gzik, M.; Gorwa, J.; Michnik, R. Gait Kinematics Index, Global Symmetry Index and Gait Deviations Profile: Concept of a new comprehensive method of gait pathology evaluation. Acta Bioeng. Biomech. 2020, 22, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Schutte, L.M.; Narayanan, U.; Stout, J.L.; Selber, P.; Gage, J.R.; Schwartz, M.H. An index for quantifying deviations from normal gait. Gait Posture 2000, 11, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.H.; Rozumalski, A. The gait deviation index: A new comprehensive index of gait pathology. Gait Posture 2008, 28, 351–357. [Google Scholar] [CrossRef]
- McMulkin, M.L.; MacWilliams, B.A. Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations. Gait Posture 2015, 41, 608–612. [Google Scholar] [CrossRef]
- Molloy, M.; McDowell, B.; Kerr, C.; Cosgrove, A. Further evidence of validity of the Gait Deviation Index. Gait Posture 2010, 31, 479–482. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The gait profile score and movement analysis profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef]
- Jochymczyk-Woźniak, K.; Nowakowska, K.; Michnik, R.; Konopelska, A.; Luszawski, J.; Mandera, M. Assessment of locomotor functions of patients suffering from cerebral palsy qualified to treat by different methods. In Innovations in Biomedical Engineering. IBE 2017. Advances in Intelligent Systems and Computing; Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E., Eds.; Springer: Cham, Switzerland, 2018; Volume 623. [Google Scholar]
- Vaughan, C.L.; Davis, B.L.; O’Connor, J.C. Dynamics of Human Gait; Kiboho Publishers: Cape Town, South Africa, 1999. [Google Scholar]
- Bartoszek, A.; Struzik, A.; Jaroszczuk, S.; Woźniewski, M.; Pietraszewski, B. Comparison of the optoelectronic BTS Smart system and IMU-based MyoMotion system for the assessment of gait variables. Acta Bioeng. Biomech. 2022, 24, 103–116. [Google Scholar] [CrossRef]
- Nowakowska, K.; Michnik, R.; Jochymczyk-Woźniak, K.; Jurkojć, J.; Mandera, M.; Kopyta, I. Application of Gait Index Assessment to Monitor the Treatment Progress in Patients with Cerebral Palsy. In Information Technologies in Medicine. “ITiB 2016. Advances in Intelligent Systems and Computing”; Piętka, E., Badura, P., Kawa, J., Wieclawek, W., Eds.; Springer: Cham, Switzerland, 2016; Volume 472. [Google Scholar]
- Cretual, A.; Bervet, K.; Ballaz, L. Gillette Gait Index in adults. Gait Posture 2010, 32, 307–310. [Google Scholar] [CrossRef]
- McMulkin, M.L.; MacWilliams, B.A. Intersite variations of the Gillette Gait Index. Gait Posture 2008, 28, 483–487. [Google Scholar] [CrossRef]
- Jurkojć, J.; Wodarski, P.; Michnik, R.; Nowakowska, K.; Bieniek, A.; Gzik, M. The Upper Limb Motion Deviation Index: A new comprehensive index of upper limb motion pathology. Acta Bioeng. Biomech. 2017, 19, 175–185. [Google Scholar] [PubMed]
Color | Value | Evaluation of Results |
---|---|---|
Green | Results in the norm | |
Yellow | Results at the limit of the norm | |
Orange | Results beyond the norm | |
Red | Results significantly beyond the norm |
j | Green Results in the Norm | Yellow Results at the Limit of the Norm | Orange Results Beyond the Norm | Red Results Significantly Beyond the Norm |
---|---|---|---|---|
AFE | ||||
AIE | ||||
KFE | ||||
KAA | ||||
KIE | ||||
HPFE | ||||
HPAA | ||||
HPIE | ||||
PTILT | ||||
POBLI | ||||
PROT |
Gait Index | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|
GKI | 0.77 | 0.17 | 0.44 | 1.22 |
GGI | 15.71 | 5.68 | 7.46 | 30.00 |
GDI | 99.23 | 8.37 | 78.95 | 121.07 |
GGI | GDI | |
---|---|---|
GKI | 0.29 | –0.73 |
Gait Index | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|
GKI | 1.55 | 0.66 | 0.64 | 4.26 |
GGI | 488.88 | 581.75 | 27.18 | 3188.9 |
GDI | 73.11 | 12.81 | 31.76 | 101.72 |
Gait Index | Patient Group | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
GKI | Rehabilitation | 0.94 | 0.26 | 0.64 | 1.63 |
Botulinum | 1.44 | 0.44 | 0.8 | 2.45 | |
Rhizotomy | 2.22 | 0.76 | 0.92 | 4.26 | |
GGI | Rehabilitation | 110.80 | 145.27 | 27.18 | 571.46 |
Botulinum | 347.21 | 330.31 | 33.06 | 1477 | |
Rhizotomy | 1114.12 | 782.17 | 63.58 | 3188.9 | |
GDI | Rehabilitation | 88.19 | 7.40 | 74.53 | 101.72 |
Botulinum | 73.56 | 9.46 | 52.97 | 90.7 | |
Rhizotomy | 61.29 | 11.53 | 31.76 | 82.84 |
Gait Index | Patient Group | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
GKI | Diplegia | 1.42 | 0.44 | 0.69 | 2.45 |
Hemiplegia | 1.07 | 0.40 | 0.64 | 2.43 | |
Quadriplegia | 1.57 | 0.39 | 0.84 | 2.19 | |
GGI | Diplegia | 344.14 | 358.59 | 33.06 | 1477 |
Hemiplegia | 134.25 | 71.66 | 27.18 | 285.44 | |
Quadriplegia | 456.66 | 327.67 | 95.2 | 1229.9 | |
GDI | Diplegia | 74.70 | 9.58 | 55.01 | 96.3 |
Hemiplegia | 84.02 | 9.44 | 56.72 | 101.72 | |
Quadriplegia | 69.03 | 10.06 | 52.97 | 85.03 |
GGI—Right | GGI—Left | GDI—Right | GDI—Left | |
---|---|---|---|---|
GKI—right | 0.85 | –0.90 | ||
GKI—left | 0.80 | –0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jochymczyk-Woźniak, K.; Wawak, K.; Michnik, R.; Nowakowska-Lipiec, K. Application of the Gait Kinematics Index in Patients with Cerebral Palsy. Appl. Sci. 2024, 14, 10312. https://doi.org/10.3390/app142210312
Jochymczyk-Woźniak K, Wawak K, Michnik R, Nowakowska-Lipiec K. Application of the Gait Kinematics Index in Patients with Cerebral Palsy. Applied Sciences. 2024; 14(22):10312. https://doi.org/10.3390/app142210312
Chicago/Turabian StyleJochymczyk-Woźniak, Katarzyna, Karolina Wawak, Robert Michnik, and Katarzyna Nowakowska-Lipiec. 2024. "Application of the Gait Kinematics Index in Patients with Cerebral Palsy" Applied Sciences 14, no. 22: 10312. https://doi.org/10.3390/app142210312
APA StyleJochymczyk-Woźniak, K., Wawak, K., Michnik, R., & Nowakowska-Lipiec, K. (2024). Application of the Gait Kinematics Index in Patients with Cerebral Palsy. Applied Sciences, 14(22), 10312. https://doi.org/10.3390/app142210312