Analysis of SiNx Waveguide-Integrated Liquid Crystal Platform for Wideband Optical Phase Shifters and Modulators
Abstract
:Featured Application
Abstract
1. Introduction
2. Setup and Methods
3. Results and Discussion
3.1. Liquid-Crystal-Based Phase Shifter Integrated on a SiNx Waveguide Structure
3.2. Multi-Mode Interferometer (MMI) Splitter for Compact LC-Based Optical Modulator
3.3. Linear Tapering of the LC Section for Optical Integration
3.4. Modulation Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atorf, B.; Mühlenbernd, H.; Muldarisnur, M.; Zentgraf, T.; Kitzerow, H. Electro-optic tuning of split ring resonators embedded in a liquid crystal. Opt. Lett. 2014, 39, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Beeckman, J.; Neyts, K.; Vanbrabant, P.J.M. Liquid-crystal photonic applications. Opt. Eng. 2011, 50, 081202. [Google Scholar] [CrossRef]
- Chomchok, T.; Hirankittiwong, P.; Pattanaporkratana, A.; Phettong, B.; Hongkanchanakul, N.; Prajongtat, P.; Hatch, T.R.; Singh, D.P.; Chattham, N. Rotation of liquid crystal microdroplets in the intensity minima of an optical vortex beam. Opt. Express 2024, 32, 24372–24383. [Google Scholar] [CrossRef]
- Shah, A.; Vishwakarma, V.K.; Lhouvum, N.; Sudhakar, A.A.; Kumar, P.; Srivastava, A.K.; Dubois, F.; Chomchok, T.; Chattham, N.; Singh, D.P. Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconductor: Proficient hole transporting material for optoelectronic devices. J. Mol. Liq. 2024, 393, 123535. [Google Scholar] [CrossRef]
- Davis, S.R.; Rommel, S.D.; Farca, G.; Anderson, M.H. A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture. In Liquid Crystals XII, Proceedings of the SPIE 7050, San Diego, CA, USA, 27 August 2008; Society of Photo Optical: Bellingham, WA, USA, 2008; p. 705005. [Google Scholar]
- Tripathi, U.S.; Bijalwan, A.; Rastogi, V. Rib Waveguide Based Liquid Crystal EO Switch. IEEE Photon. Technol. Lett. 2020, 32, 1453–1456. [Google Scholar] [CrossRef]
- Cort, W.D.; Beeckman, J.; Claes, T.; Neyts, K.; Baets, R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt. Lett. 2011, 36, 3876–3878. [Google Scholar] [CrossRef]
- Van Iseghem, L.; Picavet, E.; Yuji Takabayashi, A.; Edinger, P.; Khan, U.; Verheyen, P.; Quack, N.; Gylfason, K.B.; De Buysser, K.; Beeckman, J.; et al. Low power optical phase shifter using liquid crystal actuation on a silicon photonics platform. Opt. Mater. Express 2022, 12, 2181–2198. [Google Scholar] [CrossRef]
- Notaros, M.; Dyer, T.; Raval, M.; Baiocco, C.; Notaros, J.; Watts, M.R. Integrated visible-light liquid-crystal-based phase modulators. Opt. Express 2022, 30, 13790–13801. [Google Scholar] [CrossRef]
- Caño-García, M.; Poudereux, D.; Gordo, F.J.; Geday, M.A.; Otón, J.M.; Quintana, X. Integrated Mach–Zehnder Interferometer Based on Liquid Crystal Evanescent Field Tuning. Crystals 2019, 9, 225. [Google Scholar] [CrossRef]
- Pfeifle, J.; Alloatti, L.; Freude, W.; Leuthold, J.; Koos, C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt. Express 2012, 20, 15359–15376. [Google Scholar] [CrossRef]
- Atsumi, Y.; Watabe, K.; Uda, N.; Miura, N.; Sakakibara, Y. Initial alignment control technique using on-chip groove arrays for liquid crystal hybrid silicon optical phase shifters. Opt. Express 2019, 27, 8756–8767. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.K.; Wang, Q.; Wang, T.; Ng, S.K.; Toh, Y.T.; Lim, K.P.; Yang, Y.; Tan, D.T. Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides. ACS Appl. Mater. Interfaces 2015, 7, 21884–21889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yako, M.; Ju, K.; Kawai, N.; Chaisakul, P.; Tsuchizawa, T.; Hikita, M.; Yamada, K.; Ishikawa, Y.; Wada, K. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer. Sci. Technol. Adv. Mater. 2017, 18, 283–293. [Google Scholar] [CrossRef]
- Porcel, M.A.; Hinojosa, A.; Jans, H.; Stassen, A.; Goyvaerts, J.; Geuzebroek, D.; Geiselmann, M.; Dominguez, C.; Artundo, I. Silicon nitride photonic integration for visible light applications. Opt. Laser Technol. 2019, 112, 299–306. [Google Scholar] [CrossRef]
- Koompai, N.; Chaisakul, P.; Limsuwan, P.; Le Roux, X.; Vivien, L.; Marris-Morini, D. Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength. Sensors 2021, 21, 2513. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.Z.; Ryckeboer, E.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; de Groote, A.; et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photon. Res. 2015, 3, B47–B59. [Google Scholar] [CrossRef]
- Bauters, J.F.; Heck, M.J.R.; John, D.; Dai, D.; Tien, M.; Barton, J.S.; Liense, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 2011, 19, 3163. [Google Scholar] [CrossRef]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef]
- Sundar, K.J.; Marinins, A.; Figeys, B.; Jansen, R.; Rottenberg, X.; Kula, P.; Beeckman, J.; Dahlem, M.S.; Soussan, P. Liquid Crystal Based Active Phase Modulator for Silicon Nitride Photonics Circuits at Near-Infrared. In Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC, USA, 10–15 May 2020. OSA Technical Digest (Optica Publishing Group, 2020); Paper SF2O.5. [Google Scholar]
- Wang, G.; Cheng, R.; Shang, Z.; Sun, J.; Huang, Q.; Li, Z.; Zhang, X.; Li, Z.; Guo, K.; Yan, P. SiN-5CB liquid crystal hybrid integrated Broadband Phase shifter. Infrared Phys. Technol. 2024, 137, 105164. [Google Scholar] [CrossRef]
- Tkachenko, V.; Abbate, G.; Marino, A.; Vita, F.; Giocondo, M.; Mazzulla, A.; Ciuchi, F.; Stefano, L.D. Nematic Liquid Crystal Optical Dispersion in the Visible-Near Infrared Range. Mol. Cryst. Liq. Cryst. 2006, 454, 263–271. [Google Scholar] [CrossRef]
- Jaturaphagorn, P.; Chattham, N.; Pon-On, W.; Wongchoosuk, C.; Pattanaporkratana, A.; Chiangga, S.; Chaisakul, P. Analysis of broadband optical coupling from single photon emission to SiNx optical waveguides in very near-infrared range. Appl. Phys. B 2023, 129, 74. [Google Scholar] [CrossRef]
- Khongpetch, N.; Traiwattanapong, W.; Chiangga, S.; Limsuwan, P.; Chaisakul, P. FDTD investigation of efficient and robust integration between Si3N4 and Ge-rich GeSi for waveguide-integrated electro-absorption optical modulators. IEEE Access 2023, 11, 19458–19468. [Google Scholar] [CrossRef]
- Selvaraja, S.; de Heyn, P.; Winroth, G.; Ong, P.; Lepage, G.; Cailler, C.; Rigny, A.; Bourdelle, K.; Bogaerts, W.; van Thourhout, D.; et al. Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform. In Proceedings of the Optical Fiber Communication Conference (OFC2014), San Francisco, CA, USA, 9–13 March 2014; p. Th2A.33. [Google Scholar]
- Horikawa, T.; Shimura, D.; Okayama, H.; Jeong, S.-H.; Takahashi, H.; Ushida, J.; Sobu, Y.; Shiina, A.; Tokushima, M.; Kinoshita, K.; et al. A 300-mm Silicon Photonics Platform for Large-Scale Device Integration. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8200415. [Google Scholar] [CrossRef]
- Feilchenfeld, N.B.; Nummy, K.; Barwicz, T.; Gill, D.; Kiewra, E.; Leidy, R.; Orcutt, J.S.; Rosenberg, J.; Stricker, A.D.; Whiting, C.; et al. Silicon photonics and challenges for fabrication. In Advanced Etch Technology for Nanopatterning VI, Proceedings of the SPIE 10149, San Jose, CA, USA, 21 March 2017; Society of Photo Optical: Bellingham, WA, USA, 2017; p. 101490D. [Google Scholar]
- Bucio, T.D.; Khokhar, A.Z.; Mashanovich, G.Z.; Gardes, F.Y. N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band. Opt. Lett. 2018, 43, 1251–1254. [Google Scholar] [CrossRef]
- Frishman, A.; Malka, D. An Optical 1 × 4 Power Splitter Based on Silicon-Nitride MMI Using Strip Waveguide Structures. Nanomaterials 2023, 13, 2077. [Google Scholar] [CrossRef]
- Mu, J.; Vázquez-Córdova, S.A.; Sefunc, M.A.; Yong, Y.; García-Blanco, S.M. A Low-Loss and Broadband MMI-Based Multi/Demultiplexer in Si3N4/SiO2 Technology. J. Light. Technol. 2016, 34, 3603–3609. [Google Scholar] [CrossRef]
- Deng, H.; Bogaerts, W. Pure phase modulation based on a silicon plasma dispersion modulator. Opt. Express 2019, 27, 27191–27201. [Google Scholar] [CrossRef]
- Available online: https://www.mems-exchange.org/catalog/P3431/ (accessed on 16 September 2024).
- Gao, Y.; Xue, B.; Ma, L.; Luo, J. Effect of liquid crystal molecular orientation controlled by an electric field on friction. Tribol. Int. 2017, 115, 477–482. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Rasigade, G.; Marris-Morini, D.; Ziebell, M.; Cassan, E.; Vivien, L. Analytical model for depletion-based silicon modulator simulation. Opt. Express 2011, 19, 3919–3924. [Google Scholar] [CrossRef]
- Green WM, J.; Rooks, M.J.; Sekaric, L.; Vlasov, Y.A. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 2007, 15, 17106–17113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.-R.; Geis, M.W.; Spector, S.J.; Gan, F.; Grein, M.E.; Schulein, R.T.; Orcutt, J.S.; Yoon, J.U.; Lennon, D.M.; Lyszczarz, T.M.; et al. Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators. Opt. Express 2008, 16, 5218–5226. [Google Scholar] [CrossRef] [PubMed]
- Traiwattanapong, W.; Chaisakul, P.; Frigerio, J.; Chrastina, D.; Isella, G.; Vivien, L.; Marris-Morini, D. Design and simulation of waveguide-integrated Ge/SiGe quantum-confined Stark effect optical modulator based on adiabatic coupling with SiGe waveguide. AIP Adv. 2021, 11, 035117. [Google Scholar] [CrossRef]
- Traiwattanapong, W.; Wada, K.; Chaisakul, P. Analysis of Optical Integration between Si3N4 Waveguide and a Ge-Based Optical Modulator Using a Lateral Amorphous GeSi Taper at the Telecommunication Wavelength of 1.55 µm. Appl. Sci. 2019, 9, 3846. [Google Scholar] [CrossRef]
- Geis, M.W.; Lyszczarz, T.M.; Osgood, R.M.; Kimball, B.R. 30 to 50 ns liquid-crystal optical switches. Opt. Express 2010, 18, 18886–18893. [Google Scholar] [CrossRef]
- Brunetti, G.; Heuvink, R.; Schreuder, E.; Armenise, M.N.; Ciminelli, C. Silicon Nitride Spot Size Converter with Very Low-Loss Over the C-Band. IEEE Photon. Technol. Lett. 2023, 35, 1215–1218. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Z.; Fan, S.; Feng, J.; Liu, D.; Liao, H.; Yang, Z.; Feng, J.; Cui, N. Ultra-low loss SiN edge coupler interfacing with a single-mode fiber. Opt. Lett. 2022, 47, 4786–4789. [Google Scholar] [CrossRef]
Ref. | Integration Approach | Wavelength | Total Footprint (2 MMIs, Integration Structures, and MZI) | ER/IL | |
---|---|---|---|---|---|
M. Notaros et al. [9] | Two different SiNx layers for passive optical components and active phase shifter LC region | 632 nm (visible light) | N/A (dimensions of MMIs and integration structures were not available) | ~ | N/A |
This work | Same SiNx layer for passive optical components and active phase shifter LC region | 1530–1565 nm (C-band) | 20 600 µm2 (Figure 7a) | ~ | ~15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaturaphagorn, P.; Chattham, N.; Traiwattanapong, W.; Chaisakul, P. Analysis of SiNx Waveguide-Integrated Liquid Crystal Platform for Wideband Optical Phase Shifters and Modulators. Appl. Sci. 2024, 14, 10319. https://doi.org/10.3390/app142210319
Jaturaphagorn P, Chattham N, Traiwattanapong W, Chaisakul P. Analysis of SiNx Waveguide-Integrated Liquid Crystal Platform for Wideband Optical Phase Shifters and Modulators. Applied Sciences. 2024; 14(22):10319. https://doi.org/10.3390/app142210319
Chicago/Turabian StyleJaturaphagorn, Pawaphat, Nattaporn Chattham, Worawat Traiwattanapong, and Papichaya Chaisakul. 2024. "Analysis of SiNx Waveguide-Integrated Liquid Crystal Platform for Wideband Optical Phase Shifters and Modulators" Applied Sciences 14, no. 22: 10319. https://doi.org/10.3390/app142210319
APA StyleJaturaphagorn, P., Chattham, N., Traiwattanapong, W., & Chaisakul, P. (2024). Analysis of SiNx Waveguide-Integrated Liquid Crystal Platform for Wideband Optical Phase Shifters and Modulators. Applied Sciences, 14(22), 10319. https://doi.org/10.3390/app142210319