Dual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllers
Abstract
:Featured Application
Abstract
1. Introduction
2. Application Example
3. FCS-MPC Algorithm for Boost Converters
3.1. Non-Minimum Phase Issue in Boost Converters
3.2. Solutions to the Non-Minimum Phase Issue
3.3. Delay Compensation Consideration
4. Proposed Dual Control Strategy Based on Load Detector and Offset Corrector
5. Results
5.1. Simulation Results
5.2. Experimental Results in FPGA
5.3. Discussion and Potential Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Errouissi, R.; Al-Durra, A.; Muyeen, S.M. A Robust Continuous-Time MPC of a DC–DC Boost Converter Interfaced With a Grid-Connected Photovoltaic System. IEEE J. Photovolt. 2016, 6, 1619–1629. [Google Scholar] [CrossRef]
- Bakar Siddique, M.A.; Asad, A.; Asif, R.M.; Rehman, A.U.; Sadiq, M.T.; Ullah, I. Implementation of Incremental Conductance MPPT Algorithm with Integral Regulator by Using Boost Converter in Grid-Connected PV Array. IETE J. Res. 2021, 69, 3822–3835. [Google Scholar] [CrossRef]
- Hidalgo, H.; Orosco, R.; Huerta, H.; Vázquez, N.; Hernández, C.; Pinto, S. A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies 2023, 16, 4860. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Wang, H.; Li, G.; Ru, Y. Fault-Tolerant Three-Vector Model-Predictive-Control-Based Grid-Connected Control Strategy for Offshore Wind Farms. Electronics 2024, 13, 2316. [Google Scholar] [CrossRef]
- López, M.; Rodriguez, J.; Silva, C.; Rivera, M. Predictive Torque Control of a Multidrive System Fed by a Dual Indirect Matrix Converter. IEEE Trans. Ind. Electron. 2015, 62, 2731–2741. [Google Scholar] [CrossRef]
- Wei, X.; Bi, K.; Lan, G.; Li, W.; Cui, J. Decoupled MPC Power Balancing Strategy for Coupled Inductor Flying Capacitor DC–DC Converter. Appl. Sci. 2024, 14, 4813. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, Q.; Qin, J.; Zhang, Z.; Tse, C.K.; Xu, Y. Noise Tolerance Strategy Based on Virtual Capacitor for DC-DC Converters with Continuous Control Set Model Predictive Control. IEEE Trans. Power Electron. 2024, 39, 9084–9088. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Ryu, S.-W.; Rehman, A.U.; Choi, H.H.; Jung, J.-W. Improved Continuous Control Set Model Predictive Control for Three-Phase CVCF Inverters: Fuzzy Logic Approach. IEEE Access 2021, 9, 75158–75168. [Google Scholar] [CrossRef]
- Gonçalves, P.; Cruz, S.; Mendes, A. Finite Control Set Model Predictive Control of Six-Phase Asymmetrical Machines—An Overview. Energies 2019, 12, 4693. [Google Scholar] [CrossRef]
- Alhasheem, M.; Blaabjerg, F.; Davari, P. Performance Assessment of Grid Forming Converters Using Different Finite Control Set Model Predictive Control (FCS-MPC) Algorithms. Appl. Sci. 2019, 9, 3513. [Google Scholar] [CrossRef]
- Aguilera, R.P.; Quevedo, D.E. On the stability of MPC with a Finite Input Alphabet. IFAC Proc. Vol. 2011, 44, 7975–7980. [Google Scholar] [CrossRef]
- Gardezi, M.S.M.; Hasan, A. Machine Learning Based Adaptive Prediction Horizon in Finite Control Set Model Predictive Control. IEEE Access 2018, 6, 32392–32400. [Google Scholar] [CrossRef]
- Villarroel, F.A.; Espinoza, J.R.; Pérez, M.A.; Ramírez, R.O.; Baier, C.R.; Sbárbaro, D.; Silva, J.J.; Reyes, M.A. Stable Shortest Horizon FCS-MPC Output Voltage Control in Non-Minimum Phase Boost-Type Converters Based on Input-State Linearization. IEEE Trans. Energy Convers. 2021, 36, 1378–1391. [Google Scholar] [CrossRef]
- Villarroel, F.; Espinoza, J.; Pérez, M.; Ramírez, R.; Baier, C.; Morán, L. Shortest horizon FCS-MPC output voltage tracking in non-minimum phase boost-type converters. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 4119–4124. [Google Scholar] [CrossRef]
- Pérez, M.A.; Lizana Fuentes, R.; Rodríguez, J. Predictive control of DC-link voltage in an active-front-end rectifier. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1811–1816. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T.; Manias, S. Direct Model Predictive Current Control Strategy of DC–DC Boost Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 337–346. [Google Scholar] [CrossRef]
- Firpo, P.; Ravera, A.; Oliveri, A.; Lodi, M.; Storace, M. Use of a Partially Saturating Inductor in a Boost Converter with Model Predictive Control. Electronics 2023, 12, 3013. [Google Scholar] [CrossRef]
- Li, P.; Li, R.; Shao, T.; Zhang, J.; Fang, Z. Composite adaptive model predictive control for DC–DC boost converters. IET Power Electron. 2018, 11, 1706–1717. [Google Scholar] [CrossRef]
- Chen, F.-Z.; Maksimović, D. Digital Control for Improved Efficiency and Reduced Harmonic Distortion over Wide Load Range in Boost PFC Rectifiers. IEEE Trans. Power Electron. 2010, 25, 2683–2692. [Google Scholar] [CrossRef]
- Nair, H.S.; Lakshminarasamma, N. A Computationally Simple Predictive CCM Average Current Controller With Nearly Zero Tracking Error for Boost PFC Converter. IEEE Trans. Ind. Appl. 2020, 56, 5083–5094. [Google Scholar] [CrossRef]
- IEEE Standard for Floating-Point Arithmetic, in IEEE Std 754-2019 (Revision of IEEE 754-2008), pp.1–84, 22 July 2019. Available online: https://ieeexplore.ieee.org/document/8766229 (accessed on 24 October 2024).
- Cortes, P.; Rodriguez, J.; Silva, C.; Flores, A. Delay Compensation in Model Predictive Current Control of a Three-Phase Inverter. IEEE Trans. Ind. Electron. 2012, 59, 1323–1325. [Google Scholar] [CrossRef]
- Jin, T.; Shen, X.; Su, T.; Flesch, R.C.C. Model Predictive Voltage Control Based on Finite Control Set With Computation Time Delay Compensation for PV Systems. IEEE Trans. Energy Convers. 2019, 34, 330–338. [Google Scholar] [CrossRef]
- Talbi, B.; Krim, F.; Laib, A.; Sahli, A.; Krama, A. PI-MPC Switching Control for DC-DC Boost Converter using an Adaptive Sliding Mode Observer. In Proceedings of the 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey, 25–27 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Heydari-doostabad, H.; Ghazi, R. A new approach to design an observer for load current of UPS based on Fourier series theory in model predictive control system. Int. J. Electr. Power Energy Syst. 2019, 104, 898–909. [Google Scholar] [CrossRef]
- Zafra, E.; Vazquez, S.; Geyer, T.; Aguilera, R.P.; Franquelo, L.G. Long Prediction Horizon FCS-MPC for Power Converters and Drives. IEEE Open J. Ind. Electron. Soc. 2023, 4, 159–175. [Google Scholar] [CrossRef]
- Aguirre, M.; Garcia, J.; Perez, M.; Rodriguez, J.; Jha, A.; Romero, F. Period Control Approach Finite Control Set Model Predictive Control Switching Phase Control for Interleaved DC/DC Converters. IEEE Trans. Ind. Electron. 2024, 71, 8304–8312. [Google Scholar] [CrossRef]
- Aguirre, M.; Kouro, S.; Rojas, C.A.; Rodriguez, J.; Leon, J.I. Switching Frequency Regulation for FCS-MPC Based on a Period Control Approach. IEEE Trans. Ind. Electron. 2018, 65, 5764–5773. [Google Scholar] [CrossRef]
- Luo, S.; Qiu, W.; Wu, W.; Batarseh, I. Flyboost power factor correction cell and a new family of single-stage AC/DC converters. IEEE Trans. Power Electron. 2005, 20, 25–34. [Google Scholar] [CrossRef]
- Lazaro, A.; Barrado, A.; Pleite, J.; Vazquez, R.; Olias, E. New family of single-stage PFC converters with series inductance interval. In Proceedings of the 2002 IEEE 33rd Annual Power Electronics Specialists Conference, Cairns, Australia, 23–27 June 2002; pp. 1357–1362. [Google Scholar] [CrossRef]
- Monfared, M.T.; Gholizadeh, H.; Ben-Brahim, L. New Enhanced Family of QBC Topologies: Mitigating Capacitor Stress and Increasing Voltage Gain. In Proceedings of the 2024 IEEE 8th Energy Conference (ENERGYCON), Doha, Qatar, 4–7 March 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Li, W.; He, X. A Family of Isolated Interleaved Boost and Buck Converters With Winding-Cross-Coupled Inductors. IEEE Trans. Power Electron. 2008, 23, 3164–3173. [Google Scholar] [CrossRef]
- Ambagahawaththa, T.S.; Nayanasiri, D.R.; Jayasinghe, S.G.D. Family of Boost Converters Based on Switched Coupled Inductor and Voltage Lifter Cell. In Proceedings of the 2018 8th International Conference on Power and Energy Systems (ICPES), Colombo, Sri Lanka, 21–22 December 2018; pp. 252–257. [Google Scholar] [CrossRef]
- Mohammed, F.A.; Bahgat, M.E.; Elmasry, S.S.; Sharaf, S.M. Design of a Fuzzy Logic Controller for DC Converter of a Stand-Alone PV System Based on Maximum Power Point Tracking. In Proceedings of the 2021 22nd International Middle East Power Systems Conference (MEPCON), Assiut, Egypt, 14–16 December 2021; pp. 7–13. [Google Scholar] [CrossRef]
- Meshkati, E.; Farzanehfard, H. Family of High Step-Up Multi-Input Converters with Continuous Battery Current Based on Three Port Boost Topology and Switched Capacitors. In Proceedings of the 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Babol, Iran, 31 January–2 February 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Roberto, S.F.; Sciré, D.; Lullo, G.; Vitale, G. Equivalent Circuit Modelling of Ferrite Inductors Losses. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Scirè, D.; Lullo, G.; Vitale, G. Assessment of the Current for a Non-Linear Power Inductor Including Temperature in DC-DC Converters. Electronics 2023, 12, 579. [Google Scholar] [CrossRef]
Situation I | Situation II | |
---|---|---|
Parameters | Q: on | Q: off |
vL | ||
ic |
Parameters | Symbol | Value | Unit |
---|---|---|---|
Input voltage | Vin | 40 | V |
Output voltage reference | vC,ref | 60 | V |
Inductor current reference | iL,ref | 1.99 | A |
Load resistance | R1 | 45 | Ω |
Load resistance | R2 | 22.5 | Ω |
Capacitance | C | 32 | µF |
Inductance | L | 0.5 | mH |
Sampling time | ∆t | 5 | µs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marmol, A.; Zamiri, E.; Purraji, M.; Murillo, D.; Díaz, J.T.; Vazquez, A.; de Castro, A. Dual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllers. Appl. Sci. 2024, 14, 10318. https://doi.org/10.3390/app142210318
Marmol A, Zamiri E, Purraji M, Murillo D, Díaz JT, Vazquez A, de Castro A. Dual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllers. Applied Sciences. 2024; 14(22):10318. https://doi.org/10.3390/app142210318
Chicago/Turabian StyleMarmol, Alejandra, Elyas Zamiri, Marziye Purraji, Duberney Murillo, Jairo Tuñón Díaz, Aitor Vazquez, and Angel de Castro. 2024. "Dual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllers" Applied Sciences 14, no. 22: 10318. https://doi.org/10.3390/app142210318
APA StyleMarmol, A., Zamiri, E., Purraji, M., Murillo, D., Díaz, J. T., Vazquez, A., & de Castro, A. (2024). Dual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllers. Applied Sciences, 14(22), 10318. https://doi.org/10.3390/app142210318