A Machine Learning Approach for Breast Cancer Risk Prediction in Digital Mammography †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Segmentation
2.3. Textural Features
- Statistical/stochastic approach;
- Structural approach.
- 1–112 features of Haralick;
- 113–157 features of law;
- 158–185 features run length;
- 186–215 features of wavelet;
- 216–227 features of the histogram;
- 228 fractal dimension;
- 229 local binary pattern.
2.4. Pre-Processing Dataset and Features Selection
2.5. Machine Learning Algorithms and Neural Networks
2.6. Dataset Imbalance
2.7. Performance Metrics
3. Results
3.1. Segmentation Results
3.2. Machine Learning
Oversampling Techniques
3.3. Neural Networks
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GlobalCancerObservatory. Breast Cancer. 2023. Available online: https://gco.iarc.fr/en (accessed on 15 September 2024).
- Ray, K.M.; Joe, B.N.; Freimanis, R.I.; Sickles, E.A.; Hendrick, R.E. Screening mammography in women 40–49 years old: Current evidence. Am. J. Roentgenol. 2018, 210, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Pitman, J.A.; McGinty, G.B.; Soman, R.R.; Drotman, M.B.; Reichman, M.B.; Arleo, E.K. Screening mammography for women in their 40s: The potential impact of the American Cancer Society and US Preventive Services Task Force breast cancer screening recommendations. Am. J. Roentgenol. 2017, 209, 697–702. [Google Scholar] [CrossRef]
- Hendrick, R.E.; Helvie, M.A. United States preventive services task force screening mammography recommendations: Science ignored. Am. J. Roentgenol. 2011, 196, W112–W116. [Google Scholar] [CrossRef] [PubMed]
- Newman, L. US Preventive Services Task Force breast cancer recommendation statement on risk assessment, genetic counseling, and genetic testing for BRCA-related cancer. JAMA Surg. 2019, 154, 895–896. [Google Scholar] [CrossRef] [PubMed]
- McCormack, V.A.; dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol. Prev. Biomark. 2006, 15, 1159–1169. [Google Scholar] [CrossRef]
- Boyd, N.F.; Martin, L.J.; Yaffe, M.J.; Minkin, S. Mammographic density and breast cancer risk: Current understanding and future prospects. Breast Cancer Res. 2011, 13, 223. [Google Scholar] [CrossRef]
- Almalki, Y.E.; Soomro, T.A.; Irfan, M.; Alduraibi, S.K.; Ali, A. Impact of image enhancement module for analysis of mammogram images for diagnostics of breast cancer. Sensors 2022, 22, 1868. [Google Scholar] [CrossRef]
- Fausto, A.M.; Lopes, M.; de Sousa, M.; Furquim, T.A.; Mol, A.W.; Velasco, F.G. Optimization of image quality and dose in digital mammography. J. Digit. Imaging 2017, 30, 185–196. [Google Scholar] [CrossRef]
- Angelone, F.; Ponsiglione, A.M.; Grassi, R.; Amato, F.; Sansone, M. A general framework for the assessment of scatter correction techniques in digital mammography. Biomed. Signal Process. Control 2024, 89, 105802. [Google Scholar] [CrossRef]
- Kerlikowske, K. The mammogram that cried Wolfe. N. Engl. J. Med. 2007, 356, 297–300. [Google Scholar] [CrossRef]
- Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.; Taplin, S.H.; Dignan, M.; et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 2003, 138, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Athanasiou, A.; Baltzer, P.A.; Camps-Herrero, J.; Clauser, P.; Fallenberg, E.M.; Forrai, G.; Fuchsjäger, M.H.; Helbich, T.H.; Killburn-Toppin, F.; et al. Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). Eur. Radiol. 2022, 32, 4036–4045. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Angelone, F.; Ciliberti, F.K.; Tobia, G.P.; Jónsson Jr, H.; Ponsiglione, A.M.; Gislason, M.K.; Tortorella, F.; Amato, F.; Gargiulo, P. Innovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients: A Radiomics-Based Study. Inf. Syst. Front. 2024, 1–23. [Google Scholar] [CrossRef]
- Zhu, H.B.; Zhu, H.T.; Jiang, L.; Nie, P.; Hu, J.; Tang, W.; Zhang, X.Y.; Li, X.T.; Yao, Q.; Sun, Y.S. Radiomics analysis from magnetic resonance imaging in predicting the grade of nonfunctioning pancreatic neuroendocrine tumors: A multicenter study. Eur. Radiol. 2024, 34, 90–102. [Google Scholar] [CrossRef]
- Jin, J.; Jiang, Y.; Zhao, Y.L.; Huang, P.T. Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A systematic review and Meta-analysis. Acad. Radiol. 2024, 31, 467–479. [Google Scholar] [CrossRef]
- Ye, J.Y.; Fang, P.; Peng, Z.P.; Huang, X.T.; Xie, J.Z.; Yin, X.Y. A radiomics-based interpretable model to predict the pathological grade of pancreatic neuroendocrine tumors. Eur. Radiol. 2024, 34, 1994–2005. [Google Scholar] [CrossRef]
- Bahl, M. Combining AI and Radiomics to Improve the Accuracy of Breast US. Radiology 2024, 312, e241795. [Google Scholar] [CrossRef]
- Jiang, W.; Meng, R.; Cheng, Y.; Wang, H.; Han, T.; Qu, N.; Yu, T.; Hou, Y.; Xu, S. Intra-and peritumoral based radiomics for assessment of Lymphovascular invasion in invasive breast cancer. J. Magn. Reson. Imaging 2024, 59, 613–625. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, W.; Qiao, J.; Luo, Q.; Gao, X.; He, F.; Qin, X. Prediction of lymph node metastasis in endometrial cancer based on color doppler ultrasound radiomics. Acad. Radiol. 2024, 31, 4499–4508. [Google Scholar] [CrossRef] [PubMed]
- Angelone, F.; Ricciardi, C.; Gatta, G.; Sansone, M.; Ponsiglione, A.M.; Belfiore, M.P.; Amato, F.; Grassi, R. Breast Density Analysis on Mammograms: Application of Machine Learning with Textural Features. In Proceedings of the 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy, 26–28 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 295–300. [Google Scholar]
- Sansone, M.; Fusco, R.; Grassi, F.; Gatta, G.; Belfiore, M.P.; Angelone, F.; Ricciardi, C.; Ponsiglione, A.M.; Amato, F.; Galdiero, R.; et al. Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Curr. Oncol. 2023, 30, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Angelone, F.; Ponsiglione, A.; Belfiore, M.; Gatta, G.; Grassi, R.; Amato, F.; Sansone, M. Evaluation of breast density variability between right and left breasts. In Proceedings of the Convegno Nazionale di Bioingegneria, Padua, Italy, 21–23 June 2023. [Google Scholar]
- Zhu, S.; Wang, S.; Guo, S.; Wu, R.; Zhang, J.; Kong, M.; Pan, L.; Gu, Y.; Yu, S. Contrast-enhanced mammography radiomics analysis for preoperative prediction of breast cancer molecular subtypes. Acad. Radiol. 2024, 31, 2228–2238. [Google Scholar] [CrossRef] [PubMed]
- Wei, P. Radiomics, deep learning and early diagnosis in oncology. Emerg. Top. Life Sci. 2021, 5, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, A.; Fusco, R.; Di Bernardo, E.; Petrosino, T.; Barretta, M.L.; Porto, A.; Granata, V.; Di Bonito, M.; Fanizzi, A.; Massafra, R.; et al. Prediction of breast cancer histological outcome by radiomics and artificial intelligence analysis in contrast-enhanced mammography. Cancers 2022, 14, 2132. [Google Scholar] [CrossRef]
- Acciavatti, R.J.; Lee, S.H.; Reig, B.; Moy, L.; Conant, E.F.; Kontos, D.; Moon, W.K. Beyond breast density: Risk measures for breast cancer in multiple imaging modalities. Radiology 2023, 306, e222575. [Google Scholar] [CrossRef]
- Jing, X.; Wielema, M.; Monroy-Gonzalez, A.G.; Stams, T.R.; Mahesh, S.V.; Oudkerk, M.; Sijens, P.E.; Dorrius, M.D.; van Ooijen, P.M. Automated breast density assessment in MRI using deep learning and radiomics: Strategies for reducing inter-observer variability. J. Magn. Reson. Imaging 2024, 60, 80–91. [Google Scholar] [CrossRef]
- Landsmann, A.; Ruppert, C.; Wieler, J.; Hejduk, P.; Ciritsis, A.; Borkowski, K.; Wurnig, M.C.; Rossi, C.; Boss, A. Radiomics in photon-counting dedicated breast CT: Potential of texture analysis for breast density classification. Eur. Radiol. Exp. 2022, 6, 30. [Google Scholar] [CrossRef]
- Cai, L.; Sidey-Gibbons, C.; Nees, J.; Riedel, F.; Schaefgen, B.; Togawa, R.; Killinger, K.; Heil, J.; Pfob, A.; Golatta, M. Ultrasound radiomics features to identify patients with triple-negative breast cancer: A retrospective, single-center study. J. Ultrasound Med. 2024, 43, 467–478. [Google Scholar] [CrossRef]
- Hussain, S.; Lafarga-Osuna, Y.; Ali, M.; Naseem, U.; Ahmed, M.; Tamez-Peña, J.G. Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: A systematic review. BMC Bioinform. 2023, 24, 401. [Google Scholar] [CrossRef]
- Sansone, M.; Marrone, S.; Di Salvio, G.; Belfiore, M.P.; Gatta, G.; Fusco, R.; Vanore, L.; Zuiani, C.; Grassi, F.; Vietri, M.T.; et al. Comparison between two packages for pectoral muscle removal on mammographic images. Radiol. Med. 2022, 127, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Pertuz, S.; Torres, G.F.; Tamimi, R.; Kamarainen, J. Open framework for mammography-based breast cancer risk assessment. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Zheng, Y.; Keller, B.M.; Ray, S.; Wang, Y.; Conant, E.F.; Gee, J.C.; Kontos, D. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med. Phys. 2015, 42, 4149–4160. [Google Scholar] [CrossRef] [PubMed]
- Woods, J. Two-dimensional discrete Markovian fields. IEEE Trans. Inf. Theory 1972, 18, 232–240. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Unser, M. Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 118–125. [Google Scholar] [CrossRef]
- Sánchez-Yánez, R.E.; Kurmyshev, E.V.; Cuevas, F.J. A framework for texture classification using the coordinated clusters representation. Pattern Recognit. Lett. 2003, 24, 21–31. [Google Scholar] [CrossRef]
- Kontos, D.; Winham, S.J.; Oustimov, A.; Pantalone, L.; Hsieh, M.K.; Gastounioti, A.; Whaley, D.H.; Hruska, C.B.; Kerlikowske, K.; Brandt, K.; et al. Radiomic phenotypes of mammographic parenchymal complexity: Toward augmenting breast density in breast cancer risk assessment. Radiology 2019, 290, 41–49. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Decision trees. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 165–192. [Google Scholar]
- Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines; Technical Report; Mayo Foundation: Rochester, MN, USA, 1997. [Google Scholar]
- Mehlig, B. Machine Learning with Neural Networks: An Introduction for Scientists and Engineers; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–280. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019, arXiv:1912.06059. [Google Scholar]
- Sacchetto, D.; Morra, L.; Agliozzo, S.; Bernardi, D.; Björklund, T.; Brancato, B.; Bravetti, P.; Carbonaro, L.A.; Correale, L.; Fantò, C.; et al. Mammographic density: Comparison of visual assessment with fully automatic calculation on a multivendor dataset. Eur. Radiol. 2016, 26, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kriti; Virmani, J. Breast density classification using Laws’ mask texture features. Int. J. Biomed. Eng. Technol. 2015, 19, 279–302. [Google Scholar] [CrossRef]
- Carneiro, P.C.; Franco, M.L.N.; Thomaz, R.d.L.; Patrocinio, A.C. Breast density pattern characterization by histogram features and texture descriptors. Res. Biomed. Eng. 2017, 33, 069–077. [Google Scholar] [CrossRef]
- Valencia-Hernandez, I.; Peregrina-Barreto, H.; Reyes-Garcia, C.; Lopez-Armas, G. Density map and fuzzy classification for breast density by using BI-RADS. Comput. Methods Programs Biomed. 2021, 200, 105825. [Google Scholar] [CrossRef]
Number of women | 161 |
Age (mean ± SD) | 56.2 ± 9.0 |
Age at first menstrual period (mean ± SD) | 12.0 ± 1.5 |
Women in menopause | 116 |
Age menopause ( mean ± SD) | 49.8 ± 5.0 |
BMI (mean ± SD) | 25.0 kg/mm2 ± 4.0 |
Algorithm | Accuracy (95% CI) | Kappa | |
---|---|---|---|
SMOTE | SVM | 0.43 (0.25–0.62) | 0.27 |
Rpart tree | 0.33 (0.17–0.53) | 0.11 | |
Nnet | 0.50 (0.31–0.69) | 0.32 | |
LDA | 0.63 (0.44–0.80) | 0.49 | |
RF | 0.50 (0.31–0.69) | 0.33 | |
ROSE | SVM | 0.37 (0.20–0.56) | 0.13 |
Rpart tree | 0.50 (0.31–0.69) | 0.23 | |
Nnet | 0.57 (0.37–0.54) | 0.36 | |
LDA | 0.47 (0.28–0.66) | 0.29 | |
RF | 0.53 (0.34–0.72) | 0.25 |
Algorithm | Sensitivity | Specificity | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | ||
SMOTE | SVM | 1.00 | 0.27 | 0.50 | 0.50 | 0.85 | 0.93 | 0.67 | 0.83 |
Rpart | 0.33 | 0.20 | 0.50 | 0.50 | 0.85 | 0.73 | 0.70 | 0.79 | |
Nnet | 0.67 | 0.40 | 0.67 | 0.50 | 0.92 | 0.87 | 0.79 | 0.75 | |
LDA | 1.00 | 0.53 | 0.67 | 0.67 | 0.96 | 0.93 | 0.75 | 0.87 | |
RF | 1.00 | 0.33 | 0.67 | 0.50 | 0.89 | 0.87 | 0.75 | 0.83 | |
ROSE | SVM | 0.33 | 0.50 | 0.33 | 0.33 | 0.85 | 0.73 | 0.75 | 0.79 |
Rpart | 0.00 | 0.67 | 0.33 | 0.50 | 1.00 | 0.67 | 0.79 | 0.79 | |
Nnet | 0.33 | 0.67 | 0.50 | 0.50 | 0.92 | 0.80 | 0.83 | 0.83 | |
LDA | 0.67 | 0.33 | 0.83 | 0.33 | 0.85 | 0.87 | 0.67 | 0.92 | |
RF | 0.00 | 0.73 | 0.33 | 0.50 | 0.96 | 0.53 | 0.92 | 0.83 |
Overall Statistics | Accuracy (95% CI) | Kappa |
---|---|---|
2 layers/500 nodes | 0.82 (0.63–0.93) | 0.71 |
2 layers/250 nodes | 0.71 (0.51–0.97) | 0.50 |
Statistics | Class | Specificity | Sensitivity | Balanced Accuracy |
---|---|---|---|---|
500 nodes | A | 0.33 | 1.00 | 0.67 |
B | 0.93 | 0.84 | 0.89 | |
C | 0.50 | 0.96 | 0.73 | |
D | 1.00 | 0.91 | 0.95 | |
250 nodes | A | 0.33 | 0.96 | 0.65 |
B | 0.93 | 0.61 | 0.77 | |
C | 0.25 | 1.00 | 0.62 | |
D | 0.67 | 0.91 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelone, F.; Ponsiglione, A.M.; Ricciardi, C.; Belfiore, M.P.; Gatta, G.; Grassi, R.; Amato, F.; Sansone, M. A Machine Learning Approach for Breast Cancer Risk Prediction in Digital Mammography. Appl. Sci. 2024, 14, 10315. https://doi.org/10.3390/app142210315
Angelone F, Ponsiglione AM, Ricciardi C, Belfiore MP, Gatta G, Grassi R, Amato F, Sansone M. A Machine Learning Approach for Breast Cancer Risk Prediction in Digital Mammography. Applied Sciences. 2024; 14(22):10315. https://doi.org/10.3390/app142210315
Chicago/Turabian StyleAngelone, Francesca, Alfonso Maria Ponsiglione, Carlo Ricciardi, Maria Paola Belfiore, Gianluca Gatta, Roberto Grassi, Francesco Amato, and Mario Sansone. 2024. "A Machine Learning Approach for Breast Cancer Risk Prediction in Digital Mammography" Applied Sciences 14, no. 22: 10315. https://doi.org/10.3390/app142210315
APA StyleAngelone, F., Ponsiglione, A. M., Ricciardi, C., Belfiore, M. P., Gatta, G., Grassi, R., Amato, F., & Sansone, M. (2024). A Machine Learning Approach for Breast Cancer Risk Prediction in Digital Mammography. Applied Sciences, 14(22), 10315. https://doi.org/10.3390/app142210315