An Efficient LC–HRMS-Based Approach to Evaluate Pesticide Contamination in Water Bodies with Measurement Uncertainty Considerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Standard Solutions
2.2. Instrumentation
2.3. Sample Preparation
2.4. Sampling Area and Real Samples
2.5. Method Validation
2.6. Measurement Uncertainty
3. Results and Discussion
3.1. Sample Preparation Optimization
3.2. Method Validation
3.3. Measurement Uncertainty
3.4. Investigation of the Selected Pesticides in River Water and Sea Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves-Ferreira, J.; Vara, M.G.; Catarino, A.; Martins, I.; Mourinha, C.; Fabião, M.; Costa, M.J.; Barbieri, M.V.; de Alda, M.L.; Palma, P. Pesticide Water Variability and Prioritization: The First Steps towards Improving Water Management Strategies in Irrigation Hydro-Agriculture Areas. Sci. Total Environ. 2024, 917, 170304. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Kadiru, S.; Patil, S.; D’Souza, R. Effect of Pesticide Toxicity in Aquatic Environments: A Recent Review. Int. J. Fish. Aquat. Stud. 2022, 10, 113–118. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Anagnostopoulou, K.; Nannou, C.; Aschonitis, V.G.; Lambropoulou, D.A. Screening of Pesticides and Emerging Contaminants in Eighteen Greek Lakes by Using Target and Non-Target HRMS Approaches: Occurrence and Ecological Risk Assessment. Sci. Total Environ. 2022, 849, 157887. [Google Scholar] [CrossRef]
- Martinaiou, P.; Manoli, P.; Boti, V.; Hela, D.; Makou, E.; Albanis, T.; Konstantinou, I. Quality Control of Emerging Contaminants in Marine Aquaculture Systems by Spot Sampling-Optimized Solid Phase Extraction and Passive Sampling. Sustainability 2022, 14, 3452. [Google Scholar] [CrossRef]
- Kock, A.; Glanville, H.C.; Law, A.C.; Stanton, T.; Carter, L.J.; Taylor, J.C. Emerging Challenges of the Impacts of Pharmaceuticals on Aquatic Ecosystems: A Diatom Perspective. Sci. Total Environ. 2023, 878, 162939. [Google Scholar] [CrossRef]
- Laicher, D.; Benkendorff, K.; White, S.; Conrad, S.; Woodrow, R.L.; Butcherine, P.; Sanders, C.J. Pesticide Occurrence in an Agriculturally Intensive and Ecologically Important Coastal Aquatic System in Australia. Mar. Pollut. Bull. 2022, 180, 113675. [Google Scholar] [CrossRef]
- Rad, S.M.; Ray, A.K.; Barghi, S. Water Pollution and Agriculture Pesticide. Clean Technol. 2022, 4, 1088–1102. [Google Scholar] [CrossRef]
- Borgå, K.; McKinney, M.A.; Routti, H.; Fernie, K.J.; Giebichenstein, J.; Hallanger, I.; Muir, D.C.G. The Influence of Global Climate Change on Accumulation and Toxicity of Persistent Organic Pollutants and Chemicals of Emerging Concern in Arctic Food Webs. Environ. Sci. Process. Impacts 2022, 24, 1544–1576. [Google Scholar] [CrossRef]
- Iyiola, A.O.; Ipinmoroti, M.O.; Akingba, O.O.; Ewutanure, J.S.; Setufe, S.B.; Bilikoni, J.; Ofori-Boateng, E.; Wangboje, O.M. Organic Chemical Pollutants Within Water Systems and Sustainable Management Strategies. In Water Crises and Sustainable Management in the Global South; Izah, S.C., Ogwu, M.C., Loukas, A., Hamidifar, H., Eds.; Springer Nature: Singapore, 2024; pp. 211–251. ISBN 978-981-9749-66-9. [Google Scholar]
- Mishra, A.; Kumari, M.; Swati; Kumar, R.; Iqbal, K.; Thakur, I.S. Persistent Organic Pollutants in the Environment: Risk Assessment, Hazards, and Mitigation Strategies. Bioresour. Technol. Rep. 2022, 19, 101143. [Google Scholar] [CrossRef]
- Islam, M.A.; Amin, S.M.N.; Rahman, M.A.; Juraimi, A.S.; Uddin, M.K.; Brown, C.L.; Arshad, A. Chronic Effects of Organic Pesticides on the Aquatic Environment and Human Health: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100740. [Google Scholar] [CrossRef]
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Madhyastha, H. Environmental Pollutants and Their Effects on Human Health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, J.; Wu, M.; Li, J.-Y.; Wang, Q.; Yin, J. In Situ Application of the Diffusive Gradients in Thin Film Technique in Aquaculture Ponds for Monitoring Antibiotics, Hormones, and Herbicides. Environ. Sci. Pollut. Res. 2022, 29, 21480–21490. [Google Scholar] [CrossRef] [PubMed]
- Aminot, Y.; Sayfritz, S.J.; Thomas, K.V.; Godinho, L.; Botteon, E.; Ferrari, F.; Boti, V.; Albanis, T.; Köck-Schulmeyer, M.; Diaz-Cruz, M.S.; et al. Environmental Risks Associated with Contaminants of Legacy and Emerging Concern at European Aquaculture Areas. Environ. Pollut. 2019, 252, 1301–1310. [Google Scholar] [CrossRef]
- Antos, J.; Piosik, M.; Ginter-Kramarczyk, D.; Zembrzuska, J.; Kruszelnicka, I. Tetracyclines Contamination in European Aquatic Environments: A Comprehensive Review of Occurrence, Fate, and Removal Techniques. Chemosphere 2024, 353, 141519. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, E.-N.; Tsaboula, A.; Vryzas, Z.; Kotopoulou, A.; Kintzikoglou, K.; Papadopoulou-Mourkidou, E. Pesticides in the Rivers and Streams of Two River Basins in Northern Greece. Sci. Total Environ. 2018, 624, 732–743. [Google Scholar] [CrossRef] [PubMed]
- INSTAT. Regional Statistical Yearbook, Prefectures and Municipalities; INSTAT: Moscow, Russia, 2023; ISBN 978-9928-390-15-8. [Google Scholar]
- Εurostat Aquaculture Statistics. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Aquaculture_statistics#EU_Aquaculture (accessed on 25 September 2024).
- Ellison, S.L.R.; Williams, A. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement; EURACHEM/CITAC: Teddington, UK, 2012; ISBN 978-0-948926-30-3. [Google Scholar]
- Gkountouras, D.; Boti, V.; Albanis, T. Pesticides and Transformation Products Footprint in Greek Market Basket Vegetables: Comprehensive Screening by HRMS and Health Risk Assessment. Sci. Total Environ. 2024, 953, 176085. [Google Scholar] [CrossRef]
- SANTE SANTE/11312/2021 2021. Available online: https://www.accredia.it/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/ (accessed on 25 September 2024).
- Valverde, A.; Aguilera, A.; Valverde-Monterreal, A. Practical and Valid Guidelines for Realistic Estimation of Measurement Uncertainty in Multi-Residue Analysis of Pesticides. Food Control 2017, 71, 1–9. [Google Scholar] [CrossRef]
- Boti, V.; Toli, V.; Efthymiou, C.; Albanis, T. Screening of Commonly Used Antibiotics in Fresh and Saltwater Samples Impacted by Aquacultures: Analytical Methodology, Occurrence and Environmental Risk Assessment. Sustainability 2023, 15, 9199. [Google Scholar] [CrossRef]
- Efthymiou, C.; Boti, V.; Albanis, T. Nitrofurans in Natural Waters: Optimisation and Validation of SPE-Based Method Using UHPLC-HRMS Techniques. Int. J. Environ. Anal. Chem. 2024, 1–14. [Google Scholar] [CrossRef]
- Goessens, T.; Huysman, S.; De Troyer, N.; Deknock, A.; Goethals, P.; Lens, L.; Vanhaecke, L.; Croubels, S. Multi-Class Analysis of 46 Antimicrobial Drug Residues in Pond Water Using UHPLC-Orbitrap-HRMS and Application to Freshwater Ponds in Flanders, Belgium. Talanta 2020, 220, 121326. [Google Scholar] [CrossRef] [PubMed]
- Ofrydopoulou, A.; Nannou, C.; Evgenidou, E.; Lambropoulou, D. Sample Preparation Optimization by Central Composite Design for Multi Class Determination of 172 Emerging Contaminants in Wastewaters and Tap Water Using Liquid Chromatography High-Resolution Mass Spectrometry. J. Chromatogr. A 2021, 1652, 462369. [Google Scholar] [CrossRef]
- Gkountouras, D.; Boti, V.; Albanis, T. High Resolution Mass Spectrometry Targeted Analysis and Suspect Screening of Pesticide Residues in Fruit Samples and Assessment of Dietary Exposure. Environ. Pollut. 2024, 352, 124143. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, C.; Xu, Z.; Chakraborty, A. A Coupled Method of On-Line Solid Phase Extraction with the UHPLC-MS/MS for Detection of Sulfonamides Antibiotics Residues in Aquaculture. Chemosphere 2020, 254, 126765. [Google Scholar] [CrossRef] [PubMed]
- Allinson, M.; Cassidy, M.; Kadokami, K.; Besley, C.H. In Situ Calibration of Passive Sampling Methods for Urban Micropollutants Using Targeted Multiresidue GC and LC Screening Systems. Chemosphere 2023, 311, 136997. [Google Scholar] [CrossRef]
- Lissalde, S.; Mazzella, N.; Mazellier, P. Polar Organic Chemical Integrative Samplers for Pesticides Monitoring: Impacts of Field Exposure Conditions. Sci. Total Environ. 2014, 488–489, 188–196. [Google Scholar] [CrossRef]
- Moriya, M.; Noro, K.; Nagaosa, A.; Banno, A.; Ono, J.; Amagai, T.; Yabuki, Y. Characterization of The Permeation Properties of Membrane Filters and Sorption Properties of Sorbents Used for Polar Organic Chemical Integrative Samplers. Environ. Toxicol. Chem. 2024, 43, 2115–2121. [Google Scholar] [CrossRef]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; 2014; ISBN 978-91-87461-59-0. Available online: www.eurachem.org (accessed on 25 September 2024).
- Tavakoli, M.; Hajimahmoodi, M.; Shemirani, F. Trace Level Monitoring of Pesticides in Water Samples Using Fatty Acid Coated Magnetic Nanoparticles Prior to GC-MS. Anal. Methods 2014, 6, 2988. [Google Scholar] [CrossRef]
Compound | MDL (ng L−1) | MQL (ng L−1) | Linearity Range (ng L−1) | r2 |
---|---|---|---|---|
Diuron | 3.0 | 10.0 | MQL–1000 | 0.9997 |
Fluazifop-p-butyl | 2.0 | 6.0 | MQL–1000 | 0.9987 |
Fluometuron | 30.0 | 90.0 | MQL–1000 | 0.9987 |
Linuron | 8.0 | 23.0 | MQL–1000 | 0.9994 |
Prometryn | 0.5 | 1.7 | MQL–500 | 0.9992 |
S-metolachlor | 0.7 | 2.3 | MQL–500 | 0.9990 |
Chlorantraniliprole | 1.0 | 3.3 | MQL–1000 | 0.9989 |
Chlorpyrifos | 8.4 | 25.6 | MQL–1000 | 0.9991 |
Dimethoate | 2.0 | 6.0 | MQL–500 | 0.9994 |
Tebupirimfos | 9.0 | 30.0 | MQL–1000 | 0.9997 |
Thiacloprid | 0.9 | 2.5 | MQL–500 | 0.9991 |
Thiamethoxam | 3.0 | 10.0 | MQL–1000 | 0.9970 |
Boscalid | 5.0 | 16.0 | MQL–500 | 0.9991 |
Imazalil | 2.0 | 6.0 | MQL–500 | 0.9994 |
Metalaxyl | 0.8 | 2.3 | MQL–500 | 0.9984 |
Myclobutanil | 4.0 | 12.0 | MQL–1000 | 0.9987 |
Acetamiprid | 0.9 | 2.5 | MQL–500 | 0.9997 |
Fenpyroximate | 2.0 | 6.0 | MQL–500 | 0.9990 |
River Water | Sea Water | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pesticide | 10 ng L−1 * | 50 ng L−1 | 200 ng L−1 | 10 ng L−1 * | 50 ng L−1 | 200 ng L−1 | ||||||||||||
(%)R | (%)RSDr | (%)RSDR | (%)R | (%)RSDr | (%)RSDR | (%)R | (%)RSDr | (%)RSDR | (%)R | (%)RSDr | (%)RSDR | (%)R | (%)RSDr | (%)RSDR | (%)R | (%)RSDr | (%)RSDR | |
Acetamiprid | 71 | 7 | 7.5 | 65 | 6.2 | 9.1 | 80 | 2.5 | 6.2 | 80 | 3.2 | 6.6 | 65.2 | 8.3 | 4.1 | 82.4 | 5.1 | 4.2 |
Boscalid | - | - | - | 61 | 6.6 | 7 | 85 | 3.5 | 4.2 | - | 8.5 | 7.7 | 64.8 | 4.9 | 3.2 | 83.8 | 3.2 | 12.2 |
Chlorantraniliprole | 59 | 8.5 | 6.7 | 81 | 2.5 | 5.1 | 87 | 8 | 11.5 | 62 | 10.2 | 7.2 | 82 | 12.2 | 6.6 | 86 | 8.3 | 2.9 |
Chlorpyrifos | - | - | - | 78 | 5.1 | 8.3 | 75 | 8.7 | 14.9 | - | 6.2 | 6.2 | 79 | 11.5 | 12.2 | 76 | 6.2 | 4.9 |
Dimethoate | 61 | 9.8 | 11.2 | 78 | 1.3 | 6.2 | 68 | 4.4 | 3.2 | 64 | 2.5 | 4.2 | 74.8 | 5.1 | 8.8 | 68 | 4.2 | 5.3 |
Diuron | 69 | 7.2 | 8.1 | 73.1 | 4.1 | 5.2 | 79 | 2.4 | 2.9 | 71 | 3.2 | 6.2 | 72.9 | 2.4 | 8.5 | 79.8 | 7 | 8.5 |
Fenpyroximate | 81 | 9.9 | 11.3 | 74.2 | 9.4 | 11 | 78 | 7.7 | 4.2 | 84 | 6.7 | 6.7 | 76.8 | 9 | 3.2 | 81 | 7 | 8.5 |
Fluazifop-p-butyl | 104 | 9.6 | 9.5 | 82 | 3.2 | 6.1 | 93 | 6.5 | 8.6 | 111 | 4.4 | 4.9 | 84.3 | 4.2 | 6 | 97.2 | 8.5 | 8.3 |
Fluometuron | - | - | - | 69 | 2.9 | 9 | 82 | 3.7 | 6.7 | - | 8.8 | 4.1 | 70.4 | 5.1 | 5.7 | 83.8 | 6.4 | 6.2 |
Imazalil | 75 | 6.7 | 7.7 | 96 | 3.1 | 6.7 | 81 | 2.5 | 8.5 | 78 | 8.3 | 8.6 | 95.4 | 3.2 | 6.6 | 84 | 6 | 8.6 |
Linuron | - | - | - | 87 | 1.1 | 5.2 | 80 | 1.3 | 4.9 | - | 2.5 | 3.2 | 88.7 | 4.2 | 6.1 | 86 | 6.2 | 8.2 |
Metalaxyl | 84 | 2.4 | 8.4 | 75 | 1.3 | 2.4 | 82 | 12.2 | 7.7 | 86 | 4.2 | 6.7 | 76.8 | 4.2 | 3.1 | 82.9 | 5.7 | 8.8 |
Myclobutanil | - | - | - | 73.1 | 8.3 | 12.1 | 78 | 11.5 | 8.4 | - | 8.5 | 3.2 | 74.9 | 5.1 | 6.2 | 78.8 | 4.9 | 5.1 |
Prometryn | 78 | 5.1 | 7.7 | 78 | 2.6 | 6.2 | 86 | 2.3 | 3.2 | 76 | 4.9 | 5.1 | 80 | 8.5 | 9.9 | 89.1 | 4.2 | 11.5 |
S-metolachlor | 72 | 4.2 | 8.6 | 69 | 2.9 | 4.2 | 83 | 2.4 | 12.2 | 73 | 3.2 | 1.3 | 70.9 | 3.2 | 4.4 | 87.5 | 8.5 | 11.9 |
Tebupirimfos | - | - | 83 | 7.2 | 4.2 | 80 | 8.8 | 6.6 | - | 4.9 | 3.2 | 81.2 | 4.2 | 2.5 | 80 | 8.8 | 3.5 | |
Thiacloprid | 69 | 1.4 | 9.9 | 61 | 4.9 | 8.5 | 79 | 2.5 | 12.2 | 70.2 | 3.2 | 6.6 | 60 | 8.5 | 5.3 | 81 | 2.5 | 2.5 |
Thiamethoxam | 77 | 3.9 | 4.4 | 62.5 | 3.2 | 4.9 | 75 | 5.3 | 11.5 | 75.9 | 4.2 | 9.2 | 63.7 | 12.2 | 8.8 | 77.2 | 4.9 | 6.6 |
River Water | Sea Water | |||||
---|---|---|---|---|---|---|
10 ng L−1 ** | 50 ng L−1 | 200 ng L−1 | 10 ng L−1 | 50 ng L−1 | 200 ng L−1 | |
Acetamiprid | 8.2 | 10.0 | 42.2 | 42.6 | 4.5 | 37.6 |
Boscalid | - | 7.7 | 31.9 | - | 3.5 | 41.1 |
Chlorantraniliprole | 7.3 | 39.7 | 38.2 | 7.9 | 45.4 | 33.1 |
Chlorpyrifos | - | 48.1 | 16.3 | - | 13.4 | 5.4 |
Dimethoate | 12.3 | 45.8 | 3.5 | 4.6 | 9.6 | 5.8 |
Diuron | 8.9 | 5.7 | 42.7 | 6.8 | 9.3 | 46.0 |
Fenpyroximate | 48.4 | 12.0 | 47.4 | 37.2 | 3.5 | 43.9 |
Fluazifop-p-butyl | 28.2 | 38.5 | 25.7 | 25.6 | 34.6 | 24.4 |
Fluometuron | - | 9.9 | 39.1 | - | 6.2 | 37.0 |
Imazalil | 8.4 | 16.8 | 41.9 | 9.4 | 17.3 | 38.3 |
Linuron | - | 28.1 | 41.3 | - | 27.0 | 34.7 |
Metalaxyl | 36.5 | 2.6 | 46.1 | 32.2 | 47.6 | 40.1 |
Myclobutanil | - | 13.3 | 9.2 | - | 6.8 | 44.7 |
Prometryn | 47.7 | 46.0 | 29.1 | 5.6 | 47.8 | 32.8 |
S-metolachlor | 9.4 | 4.6 | 42.1 | 1.4 | 4.8 | 38.5 |
Tebupirimfos | - | 37.9 | 45.7 | - | 38.8 | 44.3 |
Thiacloprid | 10.8 | 9.3 | 48.8 | 7.2 | 5.8 | 38.7 |
Thiamethoxam | 47.5 | 5.4 | 12.6 | 10.1 | 9.6 | 48.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nannou, C.; Gkountouras, D.; Boti, V.; Albanis, T. An Efficient LC–HRMS-Based Approach to Evaluate Pesticide Contamination in Water Bodies with Measurement Uncertainty Considerations. Appl. Sci. 2024, 14, 10329. https://doi.org/10.3390/app142210329
Nannou C, Gkountouras D, Boti V, Albanis T. An Efficient LC–HRMS-Based Approach to Evaluate Pesticide Contamination in Water Bodies with Measurement Uncertainty Considerations. Applied Sciences. 2024; 14(22):10329. https://doi.org/10.3390/app142210329
Chicago/Turabian StyleNannou, Christina, Dimitrios Gkountouras, Vasiliki Boti, and Triantafyllos Albanis. 2024. "An Efficient LC–HRMS-Based Approach to Evaluate Pesticide Contamination in Water Bodies with Measurement Uncertainty Considerations" Applied Sciences 14, no. 22: 10329. https://doi.org/10.3390/app142210329
APA StyleNannou, C., Gkountouras, D., Boti, V., & Albanis, T. (2024). An Efficient LC–HRMS-Based Approach to Evaluate Pesticide Contamination in Water Bodies with Measurement Uncertainty Considerations. Applied Sciences, 14(22), 10329. https://doi.org/10.3390/app142210329