Nonlinear Dynamics of an Electromagnetically Actuated Cantilever Beam Under Harmonic External Excitation
Abstract
:1. Introduction
2. The Second Alternative of OAFM
3. Mathematical Model of Electrostatically Actuated Cantilever Beam in the Presence of Harmonic Excitation
4. Geometric Nonlinearities and Potential Energy
5. OAFM for Electromagnetically Actuated Cantilever Beam
Numerical Examples
6. Analysis of the Stability for the Primary Resonance
6.1. Study of Stability of Steady-State Motion
6.2. Global Stability by Lyapunov Function
6.3. Circuit Model Verification
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krulewich, D.A. Handbook of Actuators and Edge Alignment Sensors; Laurence Livermore National Laboratory: Springfield, OR, USA, 1992.
- Haghighi, H.S.; Markazi, A.H. Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 3091–3099. [Google Scholar] [CrossRef]
- Belhaq, M.; Bichri, A.; Hogapian, J.D.; Mahfoud, J. Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam. Int. J. Non-Linear Mech. 2011, 46, 828–833. [Google Scholar] [CrossRef]
- Tusset, A.M.; Bueno, A.M.; Bitencourt Nascimento, C.; Kaster, M.S.; Balthazar, J.M. Chaos suppression in NEMs resonators by using nonlinear control design. AIP Conf. Proc. 2012, 1493, 183–189. [Google Scholar]
- Muscia, R. Mechanical design of innovative electromagnetic linear actuators for marine applications. Open Eng. 2017, 7, 244–272. [Google Scholar] [CrossRef]
- Abba, F.; Rachek, M. Time-stepping FEM-based multi-level coupling of magnetic field-electric circuit and mechanical structural deformation models dedicated to the analysis of electromagnetic actuators. Actuators 2019, 8, 22. [Google Scholar] [CrossRef]
- Zuo, S.; Zhou, D.; Hu, K. Nonlinear modeling and verification of an electromagnetic actuator with consideration of friction. Proceed. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 1759–1769. [Google Scholar] [CrossRef]
- Verma, M.; Lafarga, V.; Collette, C. Perfect collocation using self-sensing electromagnetic actuators. Application to vibration control of flexible structures. Sens. Actuators A Phys. 2020, 313, 112210. [Google Scholar] [CrossRef]
- Wei, W.; Li, Q.; Xu, F.; Zhong, X.; Jiu, J.; Jin, J.; Sun, F. Research on an electromagnetic actuator for vibration suppression and energy regeneration. Actuators 2020, 9, 42. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, K.; Li, R. A bistable nonlinear electromagnetic actuator with elastic boundary for actuation performance improvement. Nonl. Dyn. 2020, 100, 3575–3596. [Google Scholar] [CrossRef]
- Seebacher, P.; Kaltenbacher, M.; Wein, F.; Lehmann, N. A pseudo density topology optimization approach in nonlinear electromagnetism applied to a 3D actuator. Int. J. Appl. Electromagn. Mech. 2020, 63, 545–559. [Google Scholar] [CrossRef]
- Al-Bakri, F.F.; Lami, S.K.; Ali, H.H.; Khafaji, S.O.W. A sliding mode control of an electromagnetic actuator used in aircraft systems. In Proceedings of the 5th Annual Systems Modelling Conference (SMC), Canberra, Australia, 14–15 September 2021. [Google Scholar]
- Mansour, N.A.; Shin, B.; Ryu, B.; Kim, Y. Development of a novel miniaturized electromagnetic actuator for a modular serial manipulator. Actuators 2021, 10, 14. [Google Scholar] [CrossRef]
- Szmidt, T.; Konowrocki, R.; Pisarski, D. Stabilization of a cantilever pipe conveying fluid using electromagnetic actuators of the transformer type. Meccanica 2021, 56, 2879–2892. [Google Scholar] [CrossRef]
- Prajwal, V.R.; Chandrashekar, B.N.M.; Yashwanth, S.D. Modified electromagnetic actuator for active suspension system. Int. J. Eng. Manag. Res. 2021, 11, 188–193. [Google Scholar]
- Repinaldo, J.R.; Koroishi, E.H.; Molina, T.A.L. Neuro-fuzzy control applied on a 2DOF structure using electromagnetic actuators. IEEE Lat. Am. Trans. 2021, 19, 75–82. [Google Scholar] [CrossRef]
- Konig, N.; Carbon, Y.; Nienhaus, M.; Grasso, E. A self-sensing method for electromagnetic actuators with hysteresis compensation. Energies 2021, 14, 6706. [Google Scholar] [CrossRef]
- Yang, K.; Tong, W.; Lin, L.; Yurchenko, D.; Wang, J. Active vibration isolation performance on the bistable nonlinear electromagnetic actuator with the elastic boundary. J. Sound Vibr. 2022, 520, 116588. [Google Scholar] [CrossRef]
- Luo, S.; Ma, H.; Li, F.; Ouakad, H.M. Dynamical analysis and chaos control of MEMS resonators by using the analog circuit. Nonl. Dyn. 2022, 108, 97–112. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, L.; Zhang, L.; Zhu, L. Hysterezis and magnetic flux leakage of long stroke micro/nanopositioning electromagnetic actuator based on Maxwell normal stress. Precis. Eng. 2022, 75, 1–11. [Google Scholar] [CrossRef]
- Lin, L.; Yurchenko, D.; Tong, W.; Yang, K. Stochastic vibration responses of the bistable electromagnetic actuator with elastic boundary controlled by the random signals. Nonl. Dyn. 2022, 108, 113–140. [Google Scholar] [CrossRef]
- Herisanu, N.; Marinca, V.; Madescu, G. Application of the Optimal Auxiliary Functions Method to a permanent magnet synchronous generator. Int. J. Nonl. Sci. Numer. Simul. 2019, 20, 399–406. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N. Construction of analytic solutions to axisymmetric flow and heat transfer on a moving cylinder. Symmetry 2020, 12, 1335. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N. Optimal Auxiliary Functions Method for a pendulum wrapping on two cylinders. Mathematics 2020, 8, 1364. [Google Scholar] [CrossRef]
- Herisanu, N.; Marinca, V. An efficient analytical approach to investigate the dynamics of misalignment multirotor system. Mathematics 2020, 8, 1083. [Google Scholar] [CrossRef]
- Herisanu, N.; Marinca, V. An effective analytical approach to nonlinear free vibration of elastically actuated microtubes. Meccanica 2021, 56, 813–823. [Google Scholar] [CrossRef]
- Herisanu, N.; Marinca, V. A solution procedure combining analytical and numerical approaches to investigate a two-degree of freedom vibro-impact oscillator. Mathematics 2021, 9, 1374. [Google Scholar] [CrossRef]
- Elsgolts, L. Differential Equations and Calculus of Variations; Mir Publishers: Moscow, Russia, 1957. [Google Scholar]
- R.H. Rand, Lecture Notes in Nonlinear Vibrations, Version 52. Available online: http://audiophile.tam.cornell.edu/randpdf/nlvibe52.pdf (accessed on 27 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herisanu, N.; Marinca, B.; Marinca, V. Nonlinear Dynamics of an Electromagnetically Actuated Cantilever Beam Under Harmonic External Excitation. Appl. Sci. 2024, 14, 10335. https://doi.org/10.3390/app142210335
Herisanu N, Marinca B, Marinca V. Nonlinear Dynamics of an Electromagnetically Actuated Cantilever Beam Under Harmonic External Excitation. Applied Sciences. 2024; 14(22):10335. https://doi.org/10.3390/app142210335
Chicago/Turabian StyleHerisanu, Nicolae, Bogdan Marinca, and Vasile Marinca. 2024. "Nonlinear Dynamics of an Electromagnetically Actuated Cantilever Beam Under Harmonic External Excitation" Applied Sciences 14, no. 22: 10335. https://doi.org/10.3390/app142210335
APA StyleHerisanu, N., Marinca, B., & Marinca, V. (2024). Nonlinear Dynamics of an Electromagnetically Actuated Cantilever Beam Under Harmonic External Excitation. Applied Sciences, 14(22), 10335. https://doi.org/10.3390/app142210335