Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers
Abstract
:1. Introduction
- An improved model for the MR damper behavior is presented and validated from experiments. The model accurately describes the hysteretic nature and the effect of the applied current on the MR damper, demonstrating superior performance compared to other state-of-the-art damper models, such as Bingham or bi-viscous models.
- Convex conditions are obtained to design a robust static output feedback MR damper current controller, only utilizing suspension deflection information, which can be practically measured by a Linear variable differential transformer (LVDT). Stability and robustness of the proposed semi-active suspension system are guaranteed under Lyapunov and criteria, respectively. An evaluation of the vehicle behavior under two road scenarios demonstrates that the proposed MR damper-based semi-active suspension system exhibits enhanced performance compared to a passive suspension system.
2. Problem Formulation
2.1. Magnetorheological Damper Model
2.2. Semi-Active Suspension Model
- In order to enhance ride comfort, the vertical acceleration has to be minimized
- The suspension deflection is limited by the mechanical structure and cannot exceed a maximum value
- In order to guarantee a firm and uninterrupted contact of the wheels on the road, it is necessary that the dynamic tyre load be less than the static tyre load
2.3. MR Damper Current Control
3. Results
3.1. Experimental Validation of the Proposed MR Damper Model
3.2. Vehicle Suspension Simulation
- A road bump with a height of cm and a length of L = 5 m , at a vehicle speed of km/h. The following formula represents the road bump profile over time [40]:The bump test is necessary for evaluating the vehicle’s suspension performance in mitigating the impact of high-energy disturbances.
- A Class A random road profile, according to ISO 8608 [44], is a vehicle speed of km/h. The objective of evaluating the vehicle suspension under this random road profile is to guarantee that the performance is not compromised under typical highway conditions, i.e., that the semi-active suspension does not affect the vehicle when it is not required.
- Passive suspension. A traditional suspension system with springs and dampers that cannot adjust to varying road conditions. The objective of this analysis is to assess the performance of a conventional vehicle.
- Semi-active suspension with MR damper. The suspension system employs a magnetorheological damper that is capable of modifying its behavior in real time in order to adapt to the road profile. The MR damper current (13) is generated according to the required suspension control input (12). The objective of this analysis is to evaluate the potential for enhancement of vehicle behavior through the implementation of the proposed system.
- Active suspension. Actuators are integrated into the suspension system with the objective of counteracting the impact of the varying road profile on the vehicle. The actuator force is generated according to the required suspension control input (12). The objective of this analysis is to evaluate the performance of the vehicle with the optimal suspension system installed, which would be costly and challenging to implement in practice.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LMI | Linear Matrix Inequality |
LVDT | Linear Variable Differential Transformer |
MR | Magnetorheological |
NDTL | Normalized Dynamic Tire Load |
PSD | Power Spectral Density |
RMS | Root Mean Square |
References
- Wang, Z.; Liu, C.; Zheng, X.; Zhao, L.; Qiu, Y. Advancements in Semi-Active Automotive Suspension Systems with Magnetorheological Dampers: A Review. Appl. Sci. 2024, 14, 7866. [Google Scholar] [CrossRef]
- Sharp, R.; Crolla, D. Road vehicle suspension system design-a review. Veh. Syst. Dyn. 1987, 16, 167–192. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Nguyen, A.T.; Lauber, J.; Boada, M.J.L.; Boada, B.L. Event-Triggered Robust Path Tracking Control Considering Roll Stability Under Network-Induced Delays for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 14743–14756. [Google Scholar] [CrossRef]
- Poussot-Vassal, C.; Spelta, C.; Sename, O.; Savaresi, S.M.; Dugard, L. Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model. Annu. Rev. Control 2012, 36, 148–160. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Li, J.; Xu, J.; Wang, Z.; Liu, S. Research on Ride Comfort Control of Air Suspension Based on Genetic Algorithm Optimized Fuzzy PID. Appl. Sci. 2024, 14, 7787. [Google Scholar] [CrossRef]
- Sename, O. Review on LPV approaches for suspension systems. Electronics 2021, 10, 2120. [Google Scholar] [CrossRef]
- Soliman, A.; Kaldas, M. Semi-active suspension systems from research to mass-market—A review. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1005–1023. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Boada, B.L.; Zhang, H.; Boada, M.J.L. Integral-Based Event Triggering Actuator Fault-Tolerant Control for an Active Suspension System Under a Networked Communication Scheme. IEEE Trans. Veh. Technol. 2023, 72, 13848–13860. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Jimenez-Salas, M.; Meléndez-Useros, M.; Boada, B.L.; Boada, M.J.L. Event-Triggered Fault-Tolerant Control for Vehicle Rollover Avoidance Based on an Active Suspension with Robustness Against Disturbances and Communication Delays. In Proceedings of the IFToMM World Congress on Mechanism and Machine Science, Tokyo, Japan, 5–10 November 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 795–805. [Google Scholar]
- Omar, M.; El-Kassaby, M.; Abdelghaffar, W. A universal suspension test rig for electrohydraulic active and passive automotive suspension system. Alex. Eng. J. 2017, 56, 359–370. [Google Scholar] [CrossRef]
- Ning, D.; Sun, S.; Zhang, J.; Du, H.; Li, W.; Wang, X. An active seat suspension design for vibration control of heavy-duty vehicles. J. Low Freq. Noise Vib. Act. Control 2016, 35, 264–278. [Google Scholar] [CrossRef]
- Song, H.; Dong, M.; Wang, X. Research on Inertial Force Attenuation Structure and Semi-Active Control of Regenerative Suspension. Appl. Sci. 2024, 14, 2314. [Google Scholar] [CrossRef]
- Basargan, H.; Mihály, A.; Gáspár, P.; Sename, O. An LPV-based online reconfigurable adaptive semi-active suspension control with MR damper. Energies 2022, 15, 3648. [Google Scholar] [CrossRef]
- Singla, U.; Singh, S. Semi-Active Control of Automotive Vehicle Suspension System Using Magnetorheological Damper—A Review; SAE Technical Paper; SAE: Warrendale, PA, USA, 2004. [Google Scholar]
- Boada, M.; Boada, B.; Diaz, V. A novel inverse dynamic model for a magnetorheological damper based on network inversion. J. Vib. Control 2018, 24, 3434–3453. [Google Scholar] [CrossRef]
- Chaudhuri, P.; Maity, D.; Maiti, D. Investigation of a diagonal magnetorheological damper for vibration reduction. J. Vib. Eng. Technol. 2022, 10, 1451–1471. [Google Scholar] [CrossRef]
- Saleh, M.K.; Nejatpour, M.; Acar, H.Y.; Lazoglu, I. A new magnetorheological damper for chatter stability of boring tools. J. Mater. Process. Technol. 2021, 289, 116931. [Google Scholar] [CrossRef]
- Şahin, İ.; Engin, T.; Çeşmeci, Ş. Comparison of some existing parametric models for magnetorheological fluid dampers. Smart Mater. Struct. 2010, 19, 035012. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Miao, J.; Li, J.; Liu, C. Sensitivity analysis of magnetorheological damper parameters based on the Bingham model. Int. J. Dyn. Control 2023, 12, 2717–2731. [Google Scholar] [CrossRef]
- Wereley, N.M.; Pang, L.; Kamath, G.M. Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J. Intell. Mater. Syst. Struct. 1998, 9, 642–649. [Google Scholar] [CrossRef]
- Di Egidio, A.; Pagliaro, S.; Contento, A. Seismic Performance of Frame Structure with Hysteretic Intermediate Discontinuity. Appl. Sci. 2023, 13, 5373. [Google Scholar] [CrossRef]
- Stanway, R.; Sproston, J.; Stevens, N. Non-linear modelling of an electro-rheological vibration damper. J. Electrost. 1987, 20, 167–184. [Google Scholar] [CrossRef]
- Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Phenomenological model of a magnetorheological damper. J. Eng. Mech. ASCE 1997, 123, 230–238. [Google Scholar]
- Stanway, R.; Sproston, J.; El-Wahed, A. Applications of electro-rheological fluids in vibration control: A survey. Smart Mater. Struct. 1996, 5, 464. [Google Scholar] [CrossRef]
- Jiang, M.; Rui, X.; Zhu, W.; Yang, F.; Zhu, H.; Jiang, R. Parameter sensitivity analysis and optimum model of the magnetorheological damper’s Bouc—Wen model. J. Vib. Control 2021, 27, 2291–2302. [Google Scholar] [CrossRef]
- Karim Afshar, K.; Korzeniowski, R.; Konieczny, J. Evaluation of Ride Performance of Active Inerter-Based Vehicle Suspension System with Parameter Uncertainties and Input Constraint via Robust H∞ Control. Energies 2023, 16, 4099. [Google Scholar] [CrossRef]
- Shaqarin, T.; Noack, B.R. Enhancing Mechanical Safety in Suspension Systems: Harnessing Control Lyapunov and Barrier Functions for Nonlinear Quarter Car Model via Quadratic Programs. Appl. Sci. 2024, 14, 3140. [Google Scholar] [CrossRef]
- Azmi, R.; Mirzaei, M.; Habibzadeh-Sharif, A. A novel optimal control strategy for regenerative active suspension system to enhance energy harvesting. Energy Convers. Manag. 2023, 291, 117277. [Google Scholar] [CrossRef]
- Meléndez-Useros, M.; Jiménez-Salas, M.; Viadero-Monasterio, F.; López-Boada, M.J. Novel Methodology for Integrated Actuator and Sensors Fault Detection and Estimation in an Active Suspension System. IEEE Trans. Reliab. 2024, 1–14. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Mohan, B.; Shendge, P.; Phadke, S. Disturbance observer based sliding mode control of active suspension systems. J. Sound Vib. 2014, 333, 2281–2296. [Google Scholar] [CrossRef]
- Sadabadi, M.S.; Peaucelle, D. From static output feedback to structured robust static output feedback: A survey. Annu. Rev. Control 2016, 42, 11–26. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Boada, B.; Boada, M.; Díaz, V. H∞ dynamic output feedback control for a networked control active suspension system under actuator faults. Mech. Syst. Signal Process. 2022, 162, 108050. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, R.; Zhang, S.; Guo, J.; Yu, S.; Chen, H. Active suspension H∞/generalized H 2 static output feedback control. J. Vib. Control 2023. [Google Scholar] [CrossRef]
- Li, Y.; Ma, S.; Li, K.; Tong, S. Adaptive Fuzzy Output Feedback Fault-Tolerant Control for Active Suspension Systems. IEEE Trans. Intell. Veh. 2024, 9, 2469–2478. [Google Scholar] [CrossRef]
- Wong, P.K.; Li, W.; Ma, X.; Yang, Z.; Wang, X.; Zhao, J. Adaptive event-triggered dynamic output feedback control for nonlinear active suspension systems based on interval type-2 fuzzy method. Mech. Syst. Signal Process. 2024, 212, 111280. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Sun, D.; Ding, R.; Yang, L. Hybrid damping control of magnetorheological semi-active suspension based on feedback linearization Kalman observer. Meccanica 2024, 59, 1087–1102. [Google Scholar] [CrossRef]
- Majdoub, K.E.; Giri, F.; Chaoui, F.Z. Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle with Magnetorheological Damper. IEEE/CAA J. Autom. Sin. 2021, 8, 582–596. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, G.; Yang, C.; Yu, L.; Zhu, W. NSGA-II-TLQR Control of Semi-active Suspension System with Magnetorheological Damper Considering Response Time Delay. J. Vib. Eng. Technol. 2024, 1–14. [Google Scholar] [CrossRef]
- Guo, S.; Yang, S.; Pan, C. Dynamic modeling of magnetorheological damper behaviors. J. Intell. Mater. Syst. Struct. 2006, 17, 3–14. [Google Scholar] [CrossRef]
- Li, H.; Gao, H.; Liu, H.; Liu, M. Fault-tolerant H∞ control for active suspension vehicle systems with actuator faults. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2012, 226, 348–363. [Google Scholar] [CrossRef]
- Alhams, A.; Qazak, A.; Badri, Y.; Sassi, S.; Renno, J.; Sassi, A. Design and testing of a hybrid electromagnetic damping device for automotive applications. J. Magn. Magn. Mater. 2024, 589, 171606. [Google Scholar] [CrossRef]
- Rodriguez, J.; Mesny, L.; Chesné, S. Sliding Mode Control for Hybrid Mass Dampers: Experimental analysis on robustness. J. Sound Vib. 2024, 575, 118241. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Meléndez-Useros, M.; Jiménez-Salas, M.; Boada, B.L. Robust Adaptive Heterogeneous Vehicle Platoon Control Based on Disturbances Estimation and Compensation. IEEE Access 2024, 12, 96924–96935. [Google Scholar] [CrossRef]
- ISO 8608; Road Surface Profiles–Reporting of Measured Data. International Standards Organisation: Geneve, Switzerland, 2016.
Parameter | Name | Value |
---|---|---|
Vehicle sprung mass | 243.2 kg | |
Vehicle unsprung mass | 28.5 kg | |
Spring stiffness | 10,680 N/m | |
Tire stiffness | 25,278 N/m | |
Tire damping | 3.65 Ns/m | |
Maximum suspension deflection | 0.05 m |
Parameter | Value |
---|---|
236.3 N | |
655.8 N/A | |
4.67 s/m | |
343.1 N s/m | |
6.05 s−1 |
Vehicle Speed | Passive | Semi-Active | Active |
---|---|---|---|
15 km/h | 0.789 m/s2 | 0.722 m/s2 | 0.510 m/s2 |
20 km/h | 1.079 m/s2 | 0.959 m/s2 | 0.635 m/s2 |
25 km/h | 1.133 m/s2 | 0.998 m/s2 | 0.683 m/s2 |
Vehicle Speed | Passive | Semi-Active | Active |
---|---|---|---|
90 km/h | 0.0026 m | 0.0015 m | 0.0014 m |
100 km/h | 0.0027 m | 0.0016 m | 0.0015 m |
110 km/h | 0.0029 m | 0.0017 m | 0.0016 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viadero-Monasterio, F.; Meléndez-Useros, M.; Jiménez-Salas, M.; Boada, B.L. Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers. Appl. Sci. 2024, 14, 10336. https://doi.org/10.3390/app142210336
Viadero-Monasterio F, Meléndez-Useros M, Jiménez-Salas M, Boada BL. Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers. Applied Sciences. 2024; 14(22):10336. https://doi.org/10.3390/app142210336
Chicago/Turabian StyleViadero-Monasterio, Fernando, Miguel Meléndez-Useros, Manuel Jiménez-Salas, and Beatriz López Boada. 2024. "Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers" Applied Sciences 14, no. 22: 10336. https://doi.org/10.3390/app142210336
APA StyleViadero-Monasterio, F., Meléndez-Useros, M., Jiménez-Salas, M., & Boada, B. L. (2024). Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers. Applied Sciences, 14(22), 10336. https://doi.org/10.3390/app142210336