Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Biosorbents
Names of Materials Prepared
- CC: Carob washed in cold water;
- CW: Carob washed with warm water (60 °C);
- CH: Carob washed in hot water (100 °C);
- MPC: Maclura pomifera washed in cold water;
- MPW: Maclura pomifera washed in warm water;
- MPH: Maclura pomifera washed in hot water.
2.2. Characterization of the Biosorbents
2.3. Experimental Adsorption Protocol
2.4. Kinetic and Isotherm Studies
2.5. Thermodynamic Analysis Methods
3. Results and Discussion
3.1. Characterization of Materials
3.1.1. Physical Characterization
Characterization by Gas Adsorption–Desorption
Characterization by Scanning Electron Microscopy (SEM)
3.1.2. Chemical Characterization
Elemental Analysis of the Materials
pH at Zero Charge Point
Analysis of Surface Functions by the Boehm Method
Analysis of Surface Functions by Fourier Transform Infrared Spectroscopy (FTIR)
- The infrared spectra exhibit a similar peak distribution for both Maclura pomifera (MP) and wild carob (C) varieties.
- The spectra indicate that the active surface functional groups for both types of biosorbents are primarily -OH bonds from polymers and polysaccharides, as well as -CH2 and -COOH bonds, which are known to play a significant role in dye adsorption.
- The spectra for each variety are nearly identical, with the primary difference being the relative intensity of the peaks.
- The intensities of the bands corresponding to O-H hydroxyl group vibrations (~3428 cm−1) and C=O elongation vibrations (1740, 1649, and 1628 cm−1) decrease with increasing wash water temperature for both materials. This trend aligns with the reduction in the acidity observed in the pHpzc measurements and Boehm titrations. This decrease may be attributed to the breaking of certain chemical bonds at higher temperatures or to structural damage, which can limit the accessibility of specific surface chemical functions.
Wave Number (cm−1) | FTIR Interpretation | |||||||
---|---|---|---|---|---|---|---|---|
In This Study | In the Bibliography | Type of Vibration | References | |||||
MPC | MPW | MPH | CC | CW | CH | |||
3450 | 3450 | 3450 | 3428 | 3428 | 3428 | 3600–3300 | Elongation vibrations of O-H hydroxyl groups (carboxylic acids, alcohols, phenols, cellulose, pectin, absorbed water, and lignin) | [58,59,60] |
2924 2855 | 2924 2855 | 2924 2855 | 2924 2855 | 2924 2855 | 2924 2855 | 2920 2850 | Asymmetrical and symmetrical C-haliphatic elongation vibration | [61] |
2370 | 2370 | 2370 | 2370 2345 | 2370 2345 | 2370 2345 | 2350 2339 | Elongation vibrations of the C≡C bond of the alkyne group | [62,63] |
40 | 1740 | 1740 | 1740 | 1740 | - | 1743.5 | C=O elongation vibrations (ketones, aldehydes, lactones, or carboxyl groups) | [64] |
1649 | 1649 | 1649 | - | - | - | 1637 | C=O elongation vibrations in cyclic amides | [65] |
- | - | - | 1628 | 1628 | 1628 | 1637–1606 | Symmetric and asymmetric C=O elongation vibration in ionic carboxylic groups (COO-) | [51] |
1520 | 1520 | 1520 | 1520 | 1520 | 1520 | 1600–1500 | Elongation vibrations of C=C bonds in condensed aromatic rings | [66] |
1449 | 1449 | 1449 | 1458 | 1458 | 1458 | 1458 | Elongation vibrations of C=O in ether | [67] |
- | - | - | 1384 | 1384 | 1384 | 1384 | Deformation vibrations of CH3 bond | [68] |
1259, 1116, 1076 | 1259 | 1259 | 1259, 1113, 1042 | 1259, 1113, 1042 | 1113 1042 | 1350–900 | C-O bond elongation vibrations in alcohols, phenols, acids, ethers, or esters | [59,60] |
832,674 | 702 | 702 | - | 669 | 669 | 858–615 | Deformation vibrations of C harmonics | [69] |
538 | - | - | 569,515 | - | - | 500–600 | Vibration of aromatic rings | [69] |
3.2. Results of Methylene Blue and Crystal Violet Adsorption on Raw Materials
3.2.1. The Effect of Various Physico-Chemical Parameters
The Effect of pH
Effect of Contact Time and Initial Dye Concentration
Effect of Adsorbent Mass
Effect of Ionic Strength
Effect of Temperature on the Adsorption Isotherm
3.2.2. Thermodynamic Analysis
3.2.3. Modeling Adsorption Kinetics
3.2.4. Modeling the Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, R.; Singh, C.K.; Kamesh; Misra, S.; Singh, B.P.; Bhardwaj, A.K.; Chandra, K.K. Water Biodiversity: Ecosystem Services, Threats, and Conservation. In Biodiversity and Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2024; pp. 347–380. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Gatica, J.M.; Amrane, A. Batch Adsorption of Synthetic Dye by Maclura Pomifera, a New Eco-Friendly Waste Biomass: Experimental Studies and Modeling. Int. J. Chem. React. Eng. 2019, 17, 20180063. [Google Scholar] [CrossRef]
- Lairini, S.; El Mahtal, K.; Miyah, Y.; Tanji, K.; Guissi, S.; Boumchita, S.; Zerrouq, F. The Adsorption of Crystal Violet from Aqueous Solution by Using Potato Peels (Solanum tuberosum): Equilibrium and Kinetic Studies. J. Mater. Environ. Sci. 2017, 8, 3252–3261. [Google Scholar]
- Mansour, H.B.; Barillier, D.; Corroler, D.; Ghedira, K.; Leila, C.G.; Mosrati, R. In Vitro Study of Dna Damage Induced by Acid Orange 52 and Its Biodegradation Derivatives. Environ. Toxicol. Chem. 2009, 28, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Khalfaoui, A.; Bouchareb, E.M.; Derbal, K.; Boukhaloua, S.; Chahbouni, B.; Bouchareb, R. Uptake of Methyl Red Dye from Aqueous Solution Using Activated Carbons Prepared from Moringa Oleifera Shells. Clean. Chem. Eng. 2022, 4, 100069. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Gatica, J.M.; Vidal, H. Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue. Arab. J. Sci. Eng. 2021, 46, 325–341. [Google Scholar] [CrossRef]
- Güzel, F.; Sayǧili, H.; Sayǧili, G.A.; Koyuncu, F. Decolorisation of Aqueous Crystal Violet Solution by a New Nanoporous Carbon: Equilibrium and Kinetic Approach. J. Ind. Eng. Chem. 2014, 20, 3375–3386. [Google Scholar] [CrossRef]
- Khan, T.A.; Sharma, S.; Ali, I. Adsorption of Rhodamine B Dye from Aqueous Solution onto Acid Activated Mango (Magnifera indica) Leaf Powder: Equilibrium, Kinetic and Thermodynamic Studies. J. Toxicol. Environ. Health Sci. 2011, 3, 286–297. [Google Scholar]
- Benalia, A.; Derbal, K.; Baatache, O.; Lehchili, C.; Khalfaoui, A.; Pizzi, A. Removal of Dyes from Water Using Aluminum-Based Water Treatment Sludge as a Low-Cost Coagulant: Use of Response. Water 2024, 16, 1400. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Aberkane, I.; Guizah, Q.E.; Khalfaoui, A.; Pizzi, A. Valorization of Pine Cones (Pinus nigras) for Industrial Wastewater Treatment and Crystal Violet Removal: A Sustainable Approach Based on Bio-Coagulants and a Bio-Adsorbent. Water 2024, 16, 260. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of Toxic Crystal Violet Dye Using Coffee Husks: Equilibrium, Kinetics and Thermodynamics Study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Bendjamaa, I.; Bensid, T.; Meniai, A.H.; Derbal, K. Effect of Calcination on Orange Peels Characteristics: Application of an Industrial Dye Adsorption. Chem. Eng. Trans. 2014, 38, 361–366. [Google Scholar] [CrossRef]
- Goci, M.C.; Leudjo Taka, A.; Martin, L.; Klink, M.J. Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers 2023, 15, 482. [Google Scholar] [CrossRef] [PubMed]
- Mane, V.S.; Vijay Babu, P.V. Kinetic and Equilibrium Studies on the Removal of Congo Red from Aqueous Solution Using Eucalyptus Wood (Eucalyptus globulus) Saw Dust. J. Taiwan Inst. Chem. Eng. 2013, 44, 81–88. [Google Scholar] [CrossRef]
- Aydin, H.; Baysal, G.; Bulut, Y. Utilization of Walnut Shells (Juglans regia) as an Adsorbent for the Removal of Acid Dyes. Desalin. Water Treat. 2009, 2, 139–147. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Reffas, A.; Harizi, I.; Rouabah, F.; Amrane, A. High Efficiency of Methylene Blue Removal Using a Novel Low-Cost Acid Treated Forest Wastes, Cupressus semperirens Cones: Experimental Results and Modeling. Part. Sci. Technol. 2019, 37, 504–513. [Google Scholar] [CrossRef]
- Sayğili, H.; Güzel, F.; Önal, Y. Conversion of Grape Industrial Processing Waste to Activated Carbon Sorbent and Its Performance in Cationic and Anionic Dyes Adsorption. J. Clean. Prod. 2015, 93, 84–93. [Google Scholar] [CrossRef]
- Liu, C.H.; Wu, J.S.; Chiu, H.C.; Suen, S.Y.; Chu, K.H. Removal of Anionic Reactive Dyes from Water Using Anion Exchange Membranes as Adsorbers. Water Res. 2007, 41, 1491–1500. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Alene, A.N. A Comparative Study of Acidic, Basic, and Reactive Dyes Adsorption from Aqueous Solution onto Kaolin Adsorbent: Effect of Operating Parameters, Isotherms, Kinetics, and Thermodynamics. Emerg. Contam. 2022, 8, 59–74. [Google Scholar] [CrossRef]
- Laggoun, Z.; Khalfaoui, A.; Benalia, A.; Ghomrani, A.F.; Bouchareb, R.; Mahfouf, A.; Pizzi, A.; Panico, A.; Derbal, K. Applied Sciences Application of Response Surface Design for Optimization of Direct Red Dye Biosorption onto Cockleshells. Appl. Sci. 2023, 13, 12333. [Google Scholar] [CrossRef]
- Gündüz, F.; Bayrak, B. Biosorption of Malachite Green from an Aqueous Solution Using Pomegranate Peel: Equilibrium Modelling, Kinetic and Thermodynamic Studies. J. Mol. Liq. 2017, 243, 790–798. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Benalia, A.; Selama, Z.; Hammoud, A.; Derbal, K.; Panico, A.; Pizzi, A. Removal of Chromium (VI) from Water Using Orange Peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure. Water 2024, 16, 742. [Google Scholar] [CrossRef]
- Nayeem, A.; Mizi, F.; Ali, M.F.; Shariffuddin, J.H. Utilization of Cockle Shell Powder as an Adsorbent to Remove Phosphorus-Containing Wastewater. Environ. Res. 2023, 216, 114514. [Google Scholar] [CrossRef] [PubMed]
- Khalfaoui, A.; Khelifi, M.N.; Khelfaoui, A.; Benalia, A.; Derbal, K. The Adsorptive Removal of Bengal Rose by Artichoke Leaves: Optimization by Full Factorials Design. Water 2022, 14, 2251. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, H.; Zhao, J.; Li, J. Biosorption of Anionic and Cationic Dyes via Raw and Chitosan Oligosaccharide-Modified Huai Flos Chrysanthemum at Different Temperatures. RSC Adv. 2019, 9, 11202–11211. [Google Scholar] [CrossRef] [PubMed]
- Amode, J.O.; Santos, J.H.; Alam, Z.M.; Mirza, A.H.; Mei, C.C. Adsorption of Methylene Blue from Aqueous Solution Using Untreated and Treated (Metroxylon spp.) Waste Adsorbent: Equilibrium and Kinetics Studies. Int. J. Ind. Chem. 2016, 7, 333–345. [Google Scholar] [CrossRef]
- Bouguettoucha, A.; Chebli, D.; Mekhalef, T.; Noui, A.; Amrane, A. The Use of a Forest Waste Biomass, Cone of Pinus Brutia for the Removal of an Anionic Azo Dye Congo Red from Aqueous Medium. Desalin. Water Treat. 2015, 55, 1956–1965. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-Factionalized Biomass Material for Methylene Blue Dye Removal: A Comprehensive Adsorption and Mechanism Study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef]
- Hussin, Z.M.; Talib, N.; Hussin, N.M.; Hanafiah, M.A.K.M.; Khalir, W.K.A.W.M. Methylene Blue Adsorption onto NaOH Modified Durian Leaf Powder: Isotherm and Kinetic Studies. Am. J. Environ. Eng. 2015, 5, 38–43. [Google Scholar] [CrossRef]
- Laskar, N.; Kumar, U. Adsorption of Crystal Violet from Wastewater by Modified Bambusa Tulda. KSCE J. Civ. Eng. 2018, 22, 2755–2763. [Google Scholar] [CrossRef]
- Mahmood, Z.; Zahra, S.; Iqbal, M.; Raza, M.A.; Nasir, S. Comparative Study of Natural and Modified Biomass of Sargassum sp. for Removal of Cd2+ and Zn2+ from Wastewater. Appl. Water Sci. 2017, 7, 3469–3481. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Borhan, A.; Saadon, S.Z.A.H. Biosorption of Wastewater Pollutants by Chitosan-Based Porous Carbons: A Sustainable Approach for Advanced Wastewater Treatment. Bioresour. Technol. Rep. 2024, 25, 101705. [Google Scholar] [CrossRef]
- Regadera-Macías, A.M.; Morales-Torres, S.; Pastrana-Martínez, L.M.; Maldonado-Hódar, F.J. Optimizing Filters of Activated Carbons Obtained from Biomass Residues for Ethylene Removal in Agro-Food Industry Devices. Environ. Res. 2024, 248, 118247. [Google Scholar] [CrossRef]
- Benyoucef, S.; Harrache, D.; Djaroud, S.; Sail, K.; Gallart-Mateu, D.; de la Guardia, M. Preparation and Characterization of Novel Microstructure Cellulosic Sawdust Material: Application as Potential Adsorbent for Wastewater Treatment. Cellulose 2020, 27, 8169–8180. [Google Scholar] [CrossRef]
- Shrestha, B.; Kour, J.; Ghimire, K.N. Adsorptive Removal of Heavy Metals from Aqueous Solution with Environmental Friendly Material—Exhausted Tea Leaves. Adv. Chem. Eng. Sci. 2016, 6, 525–540. [Google Scholar] [CrossRef]
- Shrestha, B.; Homagai, P.; Pokhrel, M.; Ghimire, K. Adsorptive Removal of Toxic Metal from Aqueous Solution by Using a Biowaste-Used Tea Leaves. Nepal. J. Sci. Technol. 2013, 13, 109–114. [Google Scholar] [CrossRef]
- Reffas, A.; Bouguettoucha, A.; Chebli, D.; Amrane, A. Adsorption of Ethyl Violet Dye in Aqueous Solution by Forest Wastes, Wild Carob. Desalin. Water Treat. 2016, 57, 9859–9870. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Degs, Y.S. New Adsorbents Based on Microemulsion Modified Diatomite and Activated Carbon for Removing Organic and Inorganic Pollutants from Waste Lubricants. Chem. Eng. J. 2011, 173, 115–128. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakademiens Handl. Band 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Dotto, G.L.; Vieira, M.L.G.; Esquerdo, V.M.; Pinto, L.A.A. Equilibrium and Thermodynamics of Azo Dyes Biosorption onto Spirulina Platensis. Braz. J. Chem. Eng. 2013, 30, 13–21. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van Der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Jang, A.; Seo, Y.; Bishop, P.L. The Removal of Heavy Metals in Urban Runoff by Sorption on Mulch. Environ. Pollut. 2005, 133, 117–127. [Google Scholar] [CrossRef]
- An, H.K.; Park, B.Y.; Kim, D.S. Crab Shell for the Removal of Heavy Metals from Aqueous Solution. Water Res. 2001, 35, 3551–3556. [Google Scholar] [CrossRef]
- Ozdemir, I.; Şahin, M.; Orhan, R.; Erdem, M. Preparation and Characterization of Activated Carbon from Grape Stalk by Zinc Chloride Activation. Fuel Process. Technol. 2014, 125, 200–206. [Google Scholar] [CrossRef]
- Djilani, C.; Zaghdoudi, R.; Modarressi, A.; Rogalski, M.; Djazi, F.; Lallam, A. Elimination of Organic Micropollutants by Adsorption on Activated Carbon Prepared from Agricultural Waste. Chem. Eng. J. 2012, 189–190, 203–212. [Google Scholar] [CrossRef]
- Aydin, H.; Baysal, G. Adsorption of Acid Dyes in Aqueous Solutions by Shells of Bittim (Pistacia khinjuk Stocks). Desalination 2006, 196, 248–259. [Google Scholar] [CrossRef]
- Reffas, A. Étude de L’Adsorption de Colorants Organiques (Rouge Nylosan et Bleu de Méthylene) sur des Charbons Actifs Préparés à Partir du Marc de Café. Ph.D. Thesis, University of Mentouri-Constatine, Constantine, Algeria, 2010. [Google Scholar]
- Benalia, A.; Atime, L.; Baatache, O.; Khalfaoui, A.; Fadia, A. Removal of Lead in Water by Coagulation Flocculation Process Using Cactus-Based Natural Coagulant: Optimization and Modeling by Response Surface Methodology (RSM). Environ. Monit. Assess. 2024, 196, 244. [Google Scholar] [CrossRef] [PubMed]
- Khalfaoui, A.; Benalia, A.; Laggoun, Z.; Bouchareb, R.; Zaamta, I.; Melloul, R.; Menasria, A.; Merouani, S.; Antonio Pizzi, K.D. Effective Synthesis and Application of Artichoke and Orange Peels-Based Bio-Sorbents for Ketoprofen Removal from Wastewater: Process Optimization Using Factorial Methodology. Desalin. Water Tratment 2024, 317, 100197. [Google Scholar] [CrossRef]
- Benalia, A.; Baatache, O.; Derbal, K.; Khalfaoui, A.; Amrouci, Z.; Pizzi, A.; Panico, A. The Use of Central Composite Design (CCD) to Optimize and Model the Coagulation-Flocculation Process Using a Natural Coagulant: Application in Jar Test and Semi-Industrial Scale. J. Water Process Eng. 2024, 57, 104704. [Google Scholar] [CrossRef]
- Altenor, S.; Carene, B.; Emmanuel, E.; Lambert, J.; Ehrhardt, J.J.; Gaspard, S. Adsorption Studies of Methylene Blue and Phenol onto Vetiver Roots Activated Carbon Prepared by Chemical Activation. J. Hazard. Mater. 2009, 165, 1029–1039. [Google Scholar] [CrossRef]
- Liang, S.; Guo, X.; Feng, N.; Tian, Q. Isotherms, Kinetics and Thermodynamic Studies of Adsorption of Cu2+ from Aqueous Solutions by Mg2+/K+ Type Orange Peel Adsorbents. J. Hazard. Mater. 2010, 174, 756–762. [Google Scholar] [CrossRef]
- Liou, T.H. Development of Mesoporous Structure and High Adsorption Capacity of Biomass-Based Activated Carbon by Phosphoric Acid and Zinc Chloride Activation. Chem. Eng. J. 2010, 158, 129–142. [Google Scholar] [CrossRef]
- Durán-Valle, C.J.; Gómez-Corzo, M.; Pastor-Villegas, J.; Gómez-Serrano, V. Study of Cherry Stones as Raw Material in Preparation of Carbonaceous Adsorbents. J. Anal. Appl. Pyrolysis 2005, 73, 59–67. [Google Scholar] [CrossRef]
- Park, S.H.; McClain, S.; Tian, Z.R.; Suib, S.L.; Karwacki, C. Surface and Bulk Measurements of Metals Deposited on Activated Carbon. Chem. Mater. 1997, 9, 176–183. [Google Scholar] [CrossRef]
- Daoud, M.; Benturki, O.; Kecira, Z.; Girods, P.; Donnot, A. Removal of Reactive Dye (BEZAKTIV Red S-MAX) from Aqueous Solution by Adsorption onto Activated Carbons Prepared from Date Palm Rachis and Jujube Stones. J. Mol. Liq. 2017, 243, 799–809. [Google Scholar] [CrossRef]
- Njoku, V.O.; Hameed, B.H. Preparation and Characterization of Activated Carbon from Corncob by Chemical Activation with H3PO4 for 2,4-Dichlorophenoxyacetic Acid Adsorption. Chem. Eng. J. 2011, 173, 391–399. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K. Etude Expérimentale et Modélisation du Processus de la Coagulation Floculation: Application Aux Eaux Destinée a la Consommation. Master’s Thesis, University of Constantine 3, El Khroub, Algeria, 2015. [Google Scholar]
- Baatache, O.; Derbal, K.; Benalia, A.; Khalfaoui, A.; Bouchareb, R.; Panico, A.; Pizzi, A. Use of Pine Cone as Bio-Coagulant for Heavy Metal Removal from Industrial Wastewater: Use of Box—Behnken Design. Ind. Crop. Prod. 2024, 210, 118185. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Carrasco-Marín, F.; Mueden, A. The Creation of Acid Carbon Surfaces by Treatment with (NH4)2S2O8. Carbon 1997, 35, 1619–1626. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Ahmad, A.L.; Loh, M.M.; Aziz, J.A. Preparation and Characterization of Activated Carbon from Oil Palm Wood and Its Evaluation on Methylene Blue Adsorption. Dye. Pigment. 2007, 75, 263–272. [Google Scholar] [CrossRef]
- Cengiz, G.; Aytar, P.; Şam, M.; Çabuk, A. Removal of Reactive Dyes using Magnetically Separable Trametes versicolor Cells as a New Composite Biosorbent. Sep. Sci. Technol. 2014, 49, 1860–1871. [Google Scholar] [CrossRef]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous-Activated Carbon Prepared from Chitosan Flakes via Single-Step Sodium Hydroxide Activation for the Adsorption of Methylene Blue. Int. J. Biol. Macromol. 2017, 98, 233–239. [Google Scholar] [CrossRef]
- Bentahar, Y. Caractérisation Physico-Chimique des Argiles Marocaines: Application à L’adsorption de L’arsenic et des Colorants Cationiques en Solution Aqueuse. Ph.D. Thesis, University of Nice-Sophia Antipolis, Nice, France, 2016. [Google Scholar]
- Deng, H.; Yang, L.; Tao, G.; Dai, J. Preparation and Characterization of Activated Carbon from Cotton Stalk by Microwave Assisted Chemical Activation-Application in Methylene Blue Adsorption from Aqueous Solution. J. Hazard. Mater. 2009, 166, 1514–1521. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.H.; Coomes, A.; Haghseresht, F.; Lu, G.Q. The Physical and Surface Chemical Characteristics of Activated Carbons and the Adsorption of Methylene Blue from Wastewater. J. Colloid Interface Sci. 2005, 284, 440–446. [Google Scholar] [CrossRef]
- Albarelli, J.Q.; Rabelo, R.B.; Santos, D.T.; Beppu, M.M.; Meireles, M.A.A. Effects of Supercritical Carbon Dioxide on Waste Banana Peels for Heavy Metal Removal. J. Supercrit. Fluids 2011, 58, 343–351. [Google Scholar] [CrossRef]
- Khanday, W.A.; Marrakchi, F.; Asif, M.; Hameed, B.H. Mesoporous Zeolite–activated Carbon Composite from Oil Palm Ash as an Effective Adsorbent for Methylene Blue. J. Taiwan Inst. Chem. Eng. 2017, 70, 32–41. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Chitosan-Clay Composite as Highly Effective and Low-Cost Adsorbent for Batch and Fixed-Bed Adsorption of Methylene Blue. Chem. Eng. J. 2014, 237, 352–361. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Sivaranjanee, R.; Vinothini, U.; Raghavi, M.; Rajasekar, K.; Ramakrishnan, K. Adsorption of Dye onto Raw and Surface Modified Tamarind Seeds: Isotherms, Process Design, Kinetics and Mechanism. Desalin. Water Treat. 2014, 52, 2620–2633. [Google Scholar] [CrossRef]
- Hameed, B.H. Evaluation of Papaya Seeds as a Novel Non-Conventional Low-Cost Adsorbent for Removal of Methylene Blue. J. Hazard. Mater. 2009, 162, 939–944. [Google Scholar] [CrossRef]
- Vadivelan, V.; Vasanth Kumar, K. Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Ertaş, M.; Acemioĝlu, B.; Alma, M.H.; Usta, M. Removal of Methylene Blue from Aqueous Solution Using Cotton Stalk, Cotton Waste and Cotton Dust. J. Hazard. Mater. 2010, 183, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Ofomaja, A.E.; Ho, Y.S. Equilibrium Sorption of Anionic Dye from Aqueous Solution by Palm Kernel Fibre as Sorbent. Dye. Pigment. 2007, 74, 60–66. [Google Scholar] [CrossRef]
- Newcombe, G.; Drikas, M. Adsorption of NOM onto Activated Carbon: Electrostatic and Non-Electrostatic Effects. Carbon 1997, 35, 1239–1250. [Google Scholar] [CrossRef]
- Janoš, P.; Coskun, S.; Pilařová, V.; Rejnek, J. Removal of Basic (Methylene Blue) and Acid (Egacid Orange) Dyes from Waters by Sorption on Chemically Treated Wood Shavings. Bioresour. Technol. 2009, 100, 1450–1453. [Google Scholar] [CrossRef]
- Han, R.; Zou, W.; Yu, W.; Cheng, S.; Wang, Y.; Shi, J. Biosorption of Methylene Blue from Aqueous Solution by Fallen Phoenix Tree’s Leaves. J. Hazard. Mater. 2007, 141, 156–162. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhou, Y.; Jiang, Y.; Sun, C. The Removal of Basic Dyes from Aqueous Solutions Using Agricultural By-Products. J. Hazard. Mater. 2008, 157, 374–385. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Dai, G. Silkworm Exuviae-A New Non-Conventional and Low-Cost Adsorbent for Removal of Methylene Blue from Aqueous Solutions. J. Hazard. Mater. 2011, 186, 1320–1327. [Google Scholar] [CrossRef]
- Pavan, F.A.; Camacho, E.S.; Lima, E.C.; Dotto, G.L.; Branco, V.T.A.; Dias, S.L.P. Formosa Papaya Seed Powder (FPSP): Preparation, Characterization and Application as an Alternative Adsorbent for the Removal of Crystal Violet from Aqueous Phase. J. Environ. Chem. Eng. 2014, 2, 230–238. [Google Scholar] [CrossRef]
- Smahi, Z. Essais de Valorisation D’un Déchet Cellulosique: Tiges de Chardons Dans L’élimination D’un Colorant Basique à Partir de Solutions Aqueuses Synthétiques. Ph.D. Thesis, University Abu-Bakr Belkaïd, Tlemcen, Algeria, 2017. [Google Scholar]
- Doǧan, M.; Özdemir, Y.; Alkan, M. Adsorption Kinetics and Mechanism of Cationic Methyl Violet and Methylene Blue Dyes onto Sepiolite. Dye. Pigment. 2007, 75, 701–713. [Google Scholar] [CrossRef]
- Doǧan, M.; Alkan, M.; Demirbaş, Ö.; Özdemir, Y.; Özmetin, C. Adsorption Kinetics of Maxilon Blue GRL onto Sepiolite from Aqueous Solutions. Chem. Eng. J. 2006, 124, 89–101. [Google Scholar] [CrossRef]
- Choumane, F.Z. Elimination des Métaux Lourds et Pesticides en Solution Aqueuse par des Matrices Argileuses. Ph.D. Thesis, University Abu-Bakr Belkaïd, Tlemcen, Algeria, 2015. [Google Scholar]
- Nasuha, N.; Hameed, B.H. Adsorption of Methylene Blue from Aqueous Solution onto NaOH-Modified Rejected Tea. Chem. Eng. J. 2011, 166, 783–786. [Google Scholar] [CrossRef]
- Çolak, F.; Atar, N.; Olgun, A. Biosorption of Acidic Dyes from Aqueous Solution by Paenibacillus Macerans: Kinetic, Thermodynamic and Equilibrium Studies. Chem. Eng. J. 2009, 150, 122–130. [Google Scholar] [CrossRef]
- Ely, A. Synthèse et Propriétés de Biosorbants à Base D’argiles Encapsulées dans des Alginates: Application au Traitement des Eaux. Ph.D. Thesis, University of Limoges France, Limoges, France, 2010. [Google Scholar]
- Dawood, S.; Sen, T.K. Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder as Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef]
- Dotto, G.L.; Pinto, L.A.A. Adsorption of Food Dyes Acid Blue 9 and Food Yellow 3 onto Chitosan: Stirring Rate Effect in Kinetics and Mechanism. J. Hazard. Mater. 2011, 187, 164–170. [Google Scholar] [CrossRef]
- Gil, A.; Assis, F.C.C.; Albeniz, S.; Korili, S.A. Removal of Dyes from Wastewaters by Adsorption on Pillared Clays. Chem. Eng. J. 2011, 168, 1032–1040. [Google Scholar] [CrossRef]
- Alene, A.N.; Abate, G.Y.; Habte, A.T. Bioadsorption of Basic Blue Dye from Aqueous Solution onto Raw and Modified Waste Ash as Economical Alternative Bioadsorbent. J. Chem. 2020, 2020, 8746035. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.M.; Santos, N.A.V.; das Gracas Cardoso, M.; Saczk, A.A. Macauba palm (Acrocomia aculeata) Cake from Biodiesel Processing: An Efficient and Low Cost Substrate for the Adsorption of Dyes. Chem. Eng. J. 2012, 183, 152–161. [Google Scholar] [CrossRef]
- Kasbaji, M.; Mennani, M.; Boussetta, A.; Grimi, N.; Barba, F.J.; Mbarki, M.; Moubarik, A. Bio-Adsorption Performances of Methylene Blue (MB) Dye on Terrestrial and Marine Natural Fibers: Effect of Physicochemical Properties, Kinetic Models and Thermodynamic Parameters. Sep. Sci. Technol. 2023, 58, 221–240. [Google Scholar] [CrossRef]
- Akkaya, G.; Güzel, F. Application of Some Domestic Wastes as New Low-Cost Biosorbents for Removal of Methylene Blue: Kinetic and Equilibrium Studies. Chem. Eng. Commun. 2014, 201, 557–578. [Google Scholar] [CrossRef]
- Song, J.; Zou, W.; Bian, Y.; Su, F.; Han, R. Adsorption Characteristics of Methylene Blue by Peanut Husk in Batch and Column Modes. Desalination 2011, 265, 119–125. [Google Scholar] [CrossRef]
- Jain, S.; Jayaram, R.V. Removal of Basic Dyes from Aqueous Solution by Low-Cost Adsorbent: Wood Apple Shell (Feronia acidissima). Desalination 2010, 250, 921–927. [Google Scholar] [CrossRef]
- Namasivayam, C.; Dinesh Kumar, M.; Selvi, K.; Ashruffunissa Begum, R.; Vanathi, T.; Yamuna, R.T. “Waste” Coir Pith—A Potential Biomass for the Treatment of Dyeing Wastewaters. Biomass Bioenergy 2001, 21, 477–483. [Google Scholar] [CrossRef]
- Ho, Y.S.; Chiu, W.T.; Wang, C.C. Regression Analysis for the Sorption Isotherms of Basic Dyes on Sugarcane Dust. Bioresour. Technol. 2005, 96, 1285–1291. [Google Scholar] [CrossRef]
- Ahmad, R. Studies on Adsorption of Crystal Violet Dye from Aqueous Solution onto Coniferous Pinus Bark Powder (CPBP). J. Hazard. Mater. 2009, 171, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Boukhemkhem, A.; Aissa-Ouaissi-Sekkouti, B.; Bedia, J.; Belver, C.; Molina, C.B. Adsorption of Crystal Violet on Kaolinite Clay: Kinetic and Equilibrium Study Using Non-Linear Models. Clay Miner. 2022, 57, 41–50. [Google Scholar] [CrossRef]
- Atmani, F.; Bensmaili, A.; Mezenner, N.Y. Synthetic Textile Effluent Removal by Skin Almonds Waste. J. Environ. Sci. Technol. 2009, 2, 153–169. [Google Scholar] [CrossRef]
- Lafi, R.; ben Fradj, A.; Hafiane, A.; Hameed, B.H. Coffee Waste as Potential Adsorbent for the Removal of Basic Dyes from Aqueous Solution. Korean J. Chem. Eng. 2014, 31, 2198–2206. [Google Scholar] [CrossRef]
- Sen, N.; Shefa, N.R.; Reza, K.; Shawon, S.M.A.Z.; Rahman, M.W. Adsorption of Crystal Violet Dye from Synthetic Wastewater by Ball-Milled Royal Palm Leaf Sheath. Sci. Rep. 2024, 14, 5349. [Google Scholar] [CrossRef] [PubMed]
Biomass | SBET (m2 g−1) | SMic (m2 g−1) | SExt (m2 g−1) | Vtot (ccg−1) | Vmic (ccg−1) | Vmic/Vtot (%) | Dp (nm) | E0 (kJ mol−1) |
---|---|---|---|---|---|---|---|---|
MPC | 237.3 | 166.2 | 71.1 | 0.347 | 0.089 | 24.42 | 6.13 | 4.25 |
MPW | 234.0 | 157.0 | 77 | 0.332 | 0.081 | 34.37 | 6.35 | 4.10 |
MPH | 182.4 | 129.8 | 52.6 | 0.215 | 0.074 | 28.60 | 6.34 | 4.10 |
CC | 79.4 | 61.2 | 18.2 | 0.103 | 0.029 | 28.15 | 5.95 | 4.37 |
CW | 46.2 | 32.6 | 13.6 | 0.069 | 0.018 | 26.12 | 6.19 | 4.20 |
CH | 38.0 | 26.7 | 11.3 | 0.061 | 0.017 | 28.07 | 5.31 | 4.90 |
Sample | Elemental Analysis (% by Mass) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Ca | S | Si | K | Al | N | Mg | P | |
MPC | 45.4 | 40.2 | 1.5 | 1.0 | - | 0.9 | 4.1 | 5.2 | 0.7 | 1.0 |
MPH | 62.4 | 36.1 | 0.6 | 0.4 | - | - | 0.5 | - | - | - |
CC | 40.4 | 48.1 | 8.9 | 0.5 | 0.4 | 0.8 | 0.9 | - | - | - |
CH | 52.6 | 47.2 | - | 0.2 | - | - | - | - | - | - |
Adsorbent | MPC | MPW | MPH | CC | CW | CH |
---|---|---|---|---|---|---|
pHPZC | 4.78 | 5.55 | 6.05 | 5.20 | 5.51 | 5.85 |
Sample | MPC | MPW | MPH | CC | CW | CH |
---|---|---|---|---|---|---|
Total acidity (mmol g−1) | 6.45 | 6.12 | 5.37 | 3.02 | 2.97 | 2.71 |
Total basicity (mmol g−1) | 2.21 | 2.12 | 2.08 | 2.62 | 2.54 | 2.57 |
Dye | Adsorbent | ∆H0 (kJmol−1) | ∆S0 (Jmol−1 K−1) | ∆G0 (kJ mol−1) | |||
---|---|---|---|---|---|---|---|
283K | 293K | 303K | 313K | ||||
MPC | −7.43 | 36.52 | −17.76 | −18.14 | −18.48 | −18.86 | |
MPW | −6.44 | 37.48 | −17.02 | −17.46 | −17.80 | −18.15 | |
MB | MPH | −5.91 | 31.60 | −14.86 | −15.16 | −15.49 | −15.80 |
CC | 5.74 | 73.23 | −14.97 | −15.75 | −16.45 | −17.17 | |
CW | 2.86 | 62.99 | −14.95 | −15.63 | −16.25 | −16.84 | |
CH | 3.59 | 64.70 | −14.71 | −15.39 | −16.02 | −16.65 | |
MPC | 9.60 | 95.44 | −17.36 | −18.42 | −19.37 | −20.22 | |
MPW | 5.21 | 77.22 | −16.64 | −17.42 | −18.18 | −18.96 | |
CV | MPH | 4.76 | 71.77 | −15.56 | −16.25 | −16.95 | −17.73 |
CC | 6.04 | 77.32 | −15.86 | −16.60 | −17.38 | −18.18 | |
CW | 7.61 | 82.55 | −15.74 | −16.59 | −17.38 | −18.23 | |
CH | 4.64 | 72.08 | −15.78 | −16.46 | −17.16 | −17.95 |
Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Material | Dye | C0 (mg L−1) | Qe.exp (mg g−1) | Qe (mg g−1) | K1 (min−1) | R2 | Qe (mg g−1) | K2 (g mg−1 min−1) | R2 |
MPC | 25 | 22.24 | 21.77 | 0.169 | 0.998 | 23.11 | 0.013 | 0.991 | |
50 | 44.58 | 42.94 | 0.157 | 0.981 | 45.94 | 0.006 | 0.999 | ||
MB | 100 | 80.09 | 78.65 | 0.119 | 0.962 | 84.65 | 0.002 | 0.989 | |
150 | 109.37 | 106.85 | 0.137 | 0.983 | 114.45 | 0.002 | 0.995 | ||
200 | 126.91 | 123.83 | 0.200 | 0.972 | 130.83 | 0.003 | 0.995 | ||
25 | 23.25 | 22.89 | 0.098 | 0.975 | 24.20 | 0.007 | 0.992 | ||
50 | 45.11 | 43.34 | 0.153 | 0.967 | 45.50 | 0.006 | 0.999 | ||
CV | 100 | 84.92 | 81.59 | 0.059 | 0.940 | 88.16 | 0.001 | 0.982 | |
150 | 113.69 | 113.41 | 0.019 | 0.998 | 135.16 | 0.0002 | 0.993 | ||
200 | 130.17 | 128.37 | 0.023 | 0.997 | 150.12 | 0.0002 | 0.995 | ||
CC | 25 | 24.40 | 23.50 | 0.145 | 0.957 | 24.68 | 0.011 | 0.995 | |
50 | 45.61 | 42.99 | 0.107 | 0.939 | 45.63 | 0.004 | 0.991 | ||
MB | 100 | 72.13 | 67.27 | 0.083 | 0.958 | 72.06 | 0.002 | 0.996 | |
150 | 78.84 | 75.09 | 0.040 | 0.984 | 83.74 | 0.001 | 0.999 | ||
200 | 79.08 | 74.01 | 0.046 | 0.976 | 81.89 | 0.001 | 0.999 | ||
25 | 24.16 | 22.47 | 0.115 | 0.927 | 23.87 | 0.008 | 0.986 | ||
50 | 47.69 | 44.31 | 0.135 | 0.910 | 46.91 | 0.005 | 0.978 | ||
CV | 100 | 81.22 | 74.53 | 0.080 | 0.890 | 80.02 | 0.002 | 0.968 | |
150 | 91.48 | 86.64 | 0.094 | 0.960 | 92.30 | 0.002 | 0.997 | ||
200 | 95.20 | 90.12 | 0.175 | 0.959 | 94.35 | 0.003 | 0.996 |
Material | Dye | C0 (mg L−1) | Step 1 | Step 2 | ||||
---|---|---|---|---|---|---|---|---|
K1 (mg g−1 min−0.5) | C (mg g−1) | R2 | K2 (mg g−1 min−0.5) | C (mg g−1) | R2 | |||
MPC | MB | 25 | 3.555 | 5.498 | 0.928 | 0.146 | 20.458 | 0.806 |
50 | 5.653 | 14.375 | 0.942 | 0.630 | 37.424 | 0.708 | ||
100 | 7.721 | 29.675 | 0.986 | 0.048 | 79.806 | 0.760 | ||
150 | 13.191 | 34.679 | 0.969 | 0.665 | 101.472 | 0.785 | ||
200 | 11.008 | 64.737 | 0.993 | 0.224 | 124.440 | 0.796 | ||
CV | 25 | 2.410 | 6.929 | 0.967 | 0.058 | 22.345 | 0.758 | |
50 | 3.148 | 22.544 | 0.887 | 0.233 | 41.236 | 0.789 | ||
100 | 7.226 | 20.046 | 0.998 | 0.760 | 72.296 | 0.726 | ||
150 | 11.042 | −13.304 | 0.982 | 1.597 | 85.738 | 0.770 | ||
200 | 12.282 | −8.082 | 0.960 | 1.882 | 97.591 | 0.783 | ||
CC | MB | 25 | 1.537 | 12.586 | 0.943 | 0.068 | 23.230 | 0.873 |
50 | 3.106 | 19.169 | 0.966 | 0.322 | 39.929 | 0.939 | ||
100 | 6.706 | 18.965 | 0.958 | 0.824 | 57.204 | 0.953 | ||
150 | 9.726 | −2.987 | 0.964 | 1.578 | 51.992 | 0.877 | ||
200 | 8.000 | 6.171 | 0.950 | 1.305 | 55.848 | 0.950 | ||
CV | 25 | 1.395 | 11.208 | 0.920 | 0.213 | 20.397 | 0.782 | |
50 | 2.221 | 25.544 | 0.972 | 0.203 | 43.793 | 0.848 | ||
100 | 3.960 | 34.510 | 0.964 | 0.768 | 67.434 | 0.806 | ||
150 | 7.035 | 32.812 | 0.928 | 0.610 | 80.357 | 0.882 | ||
200 | 4.751 | 55.871 | 0.865 | 0.551 | 85.354 | 0.959 |
Materials | Dye | Temperature (°C) | Qe.exp (mg g−1) | Langmuir | Freundlich | Sips | Redlich-Peterson | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qm (mg g−1) | KL (L mg−1) | R2 | KF (mg g−1) (L mg−1)1/n | n | R2 | Qm (mg g−1) | KS (L mg−1) | ms | R2 | KR (L g−1) | αR (L mg−1) | β | R2 | ||||
10 | 137.61 | 153.01 | 0.085 | 0.999 | 27.21 | 2.74 | 0.938 | 149.05 | 0.091 | 1.07 | 0.999 | 12.19 | 0.067 | 1.04 | 0.999 | ||
MB | 20 | 134.43 | 146.92 | 0.079 | 0.998 | 25.79 | 2.79 | 0.961 | 153.01 | 0.070 | 0.91 | 0.998 | 13.19 | 0.120 | 0.94 | 0.999 | |
30 | 125.87 | 138.50 | 0.079 | 0.999 | 24.46 | 2.78 | 0.949 | 140.66 | 0.076 | 0.97 | 0.999 | 11.58 | 0.095 | 0.97 | 0.999 | ||
MPC | 40 | 120.41 | 131.31 | 0.084 | 0.997 | 24.96 | 2.91 | 0.949 | 133.47 | 0.080 | 0.96 | 0.997 | 11.57 | 0.098 | 0.98 | 0.997 | |
10 | 124.65 | 137.62 | 0.087 | 0.994 | 29.66 | 3.30 | 0.905 | 132.07 | 0.096 | 1.17 | 0.996 | 9.65 | 0.040 | 1.11 | 0.998 | ||
CV | 20 | 136.59 | 147.46 | 0.094 | 0.999 | 31.46 | 3.22 | 0.926 | 146.04 | 0.097 | 1.03 | 0.999 | 13.20 | 0.080 | 1.02 | 0.999 | |
30 | 142.88 | 153.78 | 0.099 | 0.998 | 33.06 | 3.20 | 0.932 | 155.42 | 0.096 | 0.97 | 0.998 | 15.45 | 0.103 | 1.00 | 0.998 | ||
40 | 149.16 | 159.56 | 0.110 | 0.998 | 35.42 | 3.22 | 0.936 | 163.62 | 0.102 | 0.93 | 0.998 | 18.62 | 0.131 | 0.98 | 0.998 | ||
10 | 73.43 | 74.46 | 0.371 | 0.998 | 30.66 | 5.21 | 0.884 | 75.31 | 0.362 | 0.94 | 0.998 | 29.69 | 0.428 | 0.98 | 0.998 | ||
MB | 20 | 78.79 | 79.19 | 0.354 | 0.993 | 31.49 | 4.98 | 0.901 | 82.35 | 0.321 | 0.83 | 0.997 | 34.99 | 0.536 | 0.96 | 0.996 | |
30 | 80.93 | 81.48 | 0.358 | 0.989 | 32.50 | 4.96 | 0.913 | 86.70 | 0.307 | 0.76 | 0.997 | 41.74 | 0.674 | 0.94 | 0.995 | ||
CC | 40 | 84.14 | 84.87 | 0.362 | 0.990 | 33.60 | 4.91 | 0.910 | 89.96 | 0.312 | 0.77 | 0.997 | 42.55 | 0.649 | 0.94 | 0.995 | |
10 | 93.01 | 93.17 | 0.308 | 0.994 | 35.53 | 5.00 | 0.896 | 94.59 | 0.295 | 0.92 | 0.994 | 33.03 | 0.409 | 0.97 | 0.995 | ||
CV | 20 | 98.88 | 96.76 | 0.363 | 0.990 | 37.59 | 5.03 | 0.901 | 99.08 | 0.335 | 0.88 | 0.990 | 42.85 | 0.540 | 0.96 | 0.993 | |
30 | 104.80 | 100.99 | 0.419 | 0.965 | 42.40 | 5.35 | 0.956 | 119.12 | 0.254 | 0.53 | 0.998 | 154.52 | 2.662 | 0.88 | 0.993 | ||
40 | 108.73 | 103.85 | 0.524 | 0.950 | 45.81 | 5.55 | 0.963 | 130.18 | 0.229 | 0.46 | 0.995 | 218.24 | 3.655 | 0.88 | 0.988 |
Adsorbent | Adsorbat | Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|
Waste ash | MB | 13.5 | [98] |
Macauba palm | MB | 27.8 | [99] |
Solanum elaeagnifolium Cavanilles | MB | 50.6 | [100] |
Watermelon seed hulls | MB | 57.1 | [101] |
Peanut husk | MB | 72.1 | [102] |
Gelidium elegans | MB | 76.7 | [100] |
Sago waste | MB | 83.5 | [26] |
Wild carob | MB | 84.1 | This study |
Wood apple shell | MB | 95.2 | [103] |
Cucumber peels | MB | 111.1 | [101] |
Maclura pomifera | MB | 137.6 | This study |
Waste coir pith | CV | 2.56 | [104] |
Sugarcane dust | CV | 13.9 | [105] |
Coniferous pinus bark | CV | 32.8 | [106] |
Kaolinite clay | CV | 44.2 | [107] |
Almond skin waste | CV | 85.5 | [108] |
Coffee waste | CV | 125.0 | [109] |
Wild carob | CV | 108.7 | This study |
Wood apple shell | CV | 129.9 | [103] |
Maclura pomifera | CV | 149.2 | This study |
Royal palm leaf sheath | CV | 344.8 | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Derbal, K.; Benalia, A.; Pizzi, A. Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass. Appl. Sci. 2024, 14, 10365. https://doi.org/10.3390/app142210365
Bounaas M, Bouguettoucha A, Chebli D, Derbal K, Benalia A, Pizzi A. Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass. Applied Sciences. 2024; 14(22):10365. https://doi.org/10.3390/app142210365
Chicago/Turabian StyleBounaas, Meryem, Abdallah Bouguettoucha, Derradji Chebli, Kerroum Derbal, Abderrezzaq Benalia, and Antonio Pizzi. 2024. "Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass" Applied Sciences 14, no. 22: 10365. https://doi.org/10.3390/app142210365
APA StyleBounaas, M., Bouguettoucha, A., Chebli, D., Derbal, K., Benalia, A., & Pizzi, A. (2024). Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass. Applied Sciences, 14(22), 10365. https://doi.org/10.3390/app142210365