Emergency Dispatch Strategy Considering Spatiotemporal Evolution of Power Grid Failures Under Typhoon Conditions
Abstract
:1. Introduction
- Considering time-varying abnormal states of typhoon-susceptible grid-source equipment under the spatiotemporal trajectory of typhoons, spatiotemporal characteristics of grid failures are studied. Based on the spatiotemoral grid failures, fault probability threshold-based emergency scenarios during typhoons are developed, thus laying foundations for subsequent emergency dispatch.
- A novel robust emergency dispatch strategy is developed, considering spatiotemporal grid failures during typhoons. Based on the defender–attacker framework, a two-stage robust optimization (TSRO) model is developed, considering the fault probability threshold-based emergency scenarios. The C&CG algorithm is employed to solve the developed TSRO model to obtain the optimal dispatch of various emergency sources such as thermal units and energy storage systems.
2. Spatiotemporal Grid Failures and Emergency Scenarios During Typhoons
2.1. Abnormal States of Typical Grid-Source Equipment During Typhoons
2.1.1. Abnormal States of Wind Farm During Typhoons
2.1.2. Abnormal States of Transmission Line During Typhoons
2.2. Evolution of Spatiotemporal Grid Failures and Emergency Scenarios During Typhoons
3. Robust Emergency Dispatch Strategy Considering Spatiotemporal Grid Failures During Typhoons
3.1. Objective of Emergency Dispatch
3.2. Operational Constraints of Emergency Dispatch
3.3. Robust Emergency Dispatch Strategy During Typhoons
- Set the lower boundary to the negative infinity and the upper boundary to the positive infinity ; set the counter to zero ; initialize the set of counter ; initialize the error threshold .
- Solve the master problemDerive the optimal solutions (, , , ⋯, ) and update the lower boundary
- Solve the sub-problem and update the upper boundary .
- If , return , , and terminate. Otherwise,
- -
- (a) if , create variables and in the -th iteration and add the optimality cuts
- -
- (b) if , create variables and in the -th iteration and add the feasibility cuts
4. Case Studies
4.1. Parameter Setting
4.2. Evolution of Spatiotemporal Grid Failures of IEEE 14-Bus System During Typhoon Maria
4.3. Coordinated Emergency Dispatch of Thermal Units and ESSs
- The maximal wind speed at period i is added with a fluctuation term which follows a Gaussian distribution .
- The radius of maximum wind speed is also added with a fluctuation term which follows a Gaussian distribution .
5. Conclusions and Future Work
- Different lines encounter different levels of fatigue damage under the passage of typhoons, causing time-varying fault probabilities of lines and dynamic spatiotemporal evolution of grid failures. The threshold-based method can quickly screen out the irrelevant or less severe scenarios, thus reducing the size of emergency scenarios and complexity of the emergency dispatch model.
- Compared with the non-robust emergency dispatch strategy, the proposed robust emergency dispatch strategy can guarantee the secure operation of power systems under all emergency scenarios of the scenario set without incurring extra load and wind power curtailment costs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhtadi, A.; Pandit, D.; Nguyen, N.; Mitra, J. Distributed energy resources based microgrid: Review of architecture, control, and reliability. IEEE Trans. Ind. Appl. 2021, 57, 2223–2235. [Google Scholar] [CrossRef]
- Langeroudi, A.S.G.; Sedaghat, M.; Pirpoor, S.; Fotouhi, R.; Ghasemi, M.A. Risk-based optimal operation of power, heat and hydrogen-based microgrid considering a plug-in electric vehicle. Int. J. Hydrogen Energy 2021, 46, 30031–30047. [Google Scholar] [CrossRef]
- Guo, C.; Ye, C.; Ding, Y.; Wang, P. A multi-state model for transmission system resilience enhancement against short-circuit faults caused by extreme weather events. IEEE Trans. Power Deliv. 2020, 36, 2374–2385. [Google Scholar] [CrossRef]
- Montoya-Rincon, J.P.; Mejia-Manrique, S.A.; Azad, S.; Ghandehari, M.; Harmsen, E.W.; Khanbilvardi, R.; Gonzalez-Cruz, J.E. A socio-technical approach for the assessment of critical infrastructure system vulnerability in extreme weather events. Nat. Energy 2023, 8, 1002–1012. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Zhao, J.; Zhang, K.; Ni, M.; Ren, B. Data-driven resilient automatic generation control against false data injection attacks. IEEE Trans. Ind. Inform. 2021, 17, 8092–8101. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Cui, M.; Zhao, J.; Bi, W.; Chen, Y.; Zhang, X. Data-driven detection of stealthy false data injection attack against power system state estimation. IEEE Trans. Ind. Inform. 2022, 18, 8467–8476. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, S.; Xie, Y.; Zhou, B.; Zheng, W.; Wu, Q.; Wen, J. Supply Resilience Constrained Scheduling of MEGs for Distribution System Restoration: A Stochastic Model and FW-PH Algorithm. IEEE Trans. Smart Grid 2024. [Google Scholar] [CrossRef]
- Godse, R.; Bhat, S. Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line. IEEE Access 2020, 8, 38459–38471. [Google Scholar] [CrossRef]
- Jaimes, M.A.; García-Soto, A.D.; Martín del Campo, J.O.; Pozos-Estrada, A. Probabilistic risk assessment on wind turbine towers subjected to cyclone-induced wind loads. Wind. Energy 2020, 23, 528–546. [Google Scholar] [CrossRef]
- Mishra, S.; Anderson, K.; Miller, B.; Boyer, K.; Warren, A. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Appl. Energy 2020, 264, 114726. [Google Scholar] [CrossRef]
- Younesi, A.; Shayeghi, H.; Safari, A.; Siano, P. Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation. Energy 2020, 207, 118220. [Google Scholar] [CrossRef]
- Ti, B.; Li, G.; Zhou, M.; Wang, J. Resilience assessment and improvement for cyber-physical power systems under typhoon disasters. IEEE Trans. Smart Grid 2021, 13, 783–794. [Google Scholar] [CrossRef]
- Espinoza, S.; Poulos, A.; Rudnick, H.; de la Llera, J.C.; Panteli, M.; Mancarella, P. Risk and resilience assessment with component criticality ranking of electric power systems subject to earthquakes. IEEE Syst. J. 2020, 14, 2837–2848. [Google Scholar] [CrossRef]
- Bi, W.; Tian, L.; Li, C.; Ma, Z.; Pan, H. Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect. Reliab. Eng. Syst. Saf. 2023, 229, 108875. [Google Scholar] [CrossRef]
- Fu, B.; Zhao, J.; Li, B.; Yao, J.; Teifouet, A.R.M.; Sun, L.; Wang, Z. Fatigue reliability analysis of wind turbine tower under random wind load. Struct. Saf. 2020, 87, 101982. [Google Scholar] [CrossRef]
- Ceferino, L.; Lin, N.; Xi, D. Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience. Reliab. Eng. Syst. Saf. 2023, 229, 108896. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Peng, Y.; Chen, W.; Huang, H.; Wu, T.; Xu, X. Distribution network operational risk assessment and early warning considering multi-risk factors. IET Gener. Transm. Distrib. 2020, 14, 3139–3149. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, Y. Preventive-corrective coordinated transient stability dispatch of power systems with uncertain wind power. IEEE Trans. Power Syst. 2020, 35, 3616–3626. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, J.; Zang, T.; Cai, Y.; Sun, B.; Qiu, Y. Emergency Dispatch Approach for Power Systems with Hybrid Energy Considering Thermal Power Unit Ramping. Energies 2023, 16, 4213. [Google Scholar] [CrossRef]
- Chen, B.; Ye, Z.; Chen, C.; Wang, J.; Ding, T.; Bie, Z. Toward a synthetic model for distribution system restoration and crew dispatch. IEEE Trans. Power Syst. 2018, 34, 2228–2239. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, X.; Hou, Y.; Liu, H.; Yang, Y. Coordination of preventive, emergency and restorative dispatch in extreme weather events. IEEE Trans. Power Syst. 2021, 37, 2624–2638. [Google Scholar] [CrossRef]
- Rong, J.; Zhou, M.; Zhang, Z.; Li, G. Coordination of preventive and emergency dispatch in renewable energy integrated power systems under extreme weather. IET Renew. Power Gener. 2024, 18, 1164–1176. [Google Scholar]
- Huang, L.; Lai, C.S.; Zhao, Z.; Yang, G.; Zhong, B.; Lai, L.L. Robust Nk Security-constrained Optimal Power Flow Incorporating Preventive and Corrective Generation Dispatch to Improve Power System Reliability. CSEE J. Power Energy Syst. 2022, 9, 351–364. [Google Scholar]
- Wang, Q.; Yu, Z.; Ye, R.; Lin, Z.; Tang, Y. An ordered curtailment strategy for offshore wind power under extreme weather conditions considering the resilience of the grid. IEEE Access 2019, 7, 54824–54833. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Cheng, H.; Li, Z.; Gu, Q.; Tian, X. Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators. Renew. Energy 2022, 200, 303–319. [Google Scholar] [CrossRef]
- Cai, S.; Xie, Y.; Zhang, M.; Jin, X.; Wu, Q.; Guo, J. A Stochastic Sequential Service Restoration Model for Distribution Systems Considering Microgrid Interconnection. IEEE Trans. Smart Grid 2023, 15, 2396–2409. [Google Scholar] [CrossRef]
- Yao, K.; Yu, J.; Xu, T.; Liu, Q. A method to generate dynamic accident set for power grid clustered faults caused by tropical cyclone. Power Syst. Technol. 2014, 38, 1593–1599. [Google Scholar]
Parameter | 1 h | 2 h | 3 h | 4 h |
48 m/s | 50 m/s | 50 m/s | 48 m/s | |
25.1 m | 24.5 m | 30.2 m | 27.6 m | |
(123.9 E, 25.4 N) | (123.6 E, 25.5 N) | (123.4 E, 25.6 N) | (123.1 E, 25.8 N) | |
Parameter | 5 h | 6 h | 7 h | 8 h |
48 m/s | 48 m/s | 48 m/s | 48 m/s | |
28.4 m | 28.4 m | 26.2 m | 23.2 m | |
(122.7 E, 25.9 N) | (122.3 E, 26.1 N) | (121.9 E, 26.3 N) | (121.4 E, 26.3 N) | |
Parameter | 9 h | 10 h | 11 h | 12 h |
45 m/s | 45 m/s | 45 m/s | 43 m/s | |
25.8 m | 22.4 m | 27.3 m | 32.8 m | |
(121.0 E, 26.3 N) | (120.8 E, 26.3 N) | (120.6 E, 26.4 N) | (120.3 E, 26.4 N) | |
Parameter | 13 h | 14 h | 15 h | 16 h |
43 m/s | 43 m/s | 43 m/s | 40 m/s | |
32.5 m | 32.8 m | 39.4 m | 39.9 m | |
(119.9 E, 26.4 N) | (119.5 E, 26.3 N) | (119.1 E, 26.2 N) | (118.9 E, 26.3 N) | |
Parameter | 17 h | 18 h | 19 h | 20 h |
40 m/s | 40 m/s | 40 m/s | 40 m/s | |
35.9 m | 39.9 m | 39.4 m | 37.5 m | |
(118.7 E, 26.4 N) | (118.4 E, 26.5 N) | (118.1 E, 26.7 N) | (117.8 E, 26.9 N) | |
Parameter | 21 h | 22 h | 23 h | 24 h |
40 m/s | 40 m/s | 40 m/s | 38 m/s | |
41.1 m | 43.7 m | 45.7 m | 42.8 m | |
(117.6 E, 27.0 N) | (117.4 E, 27.1 N) | (117.2 E, 27.1 N) | (117.0 E, 27.1 N) |
ID | ||||
---|---|---|---|---|
1 | 3 p.u. | 0.25 p.u. | 0.043, 20, 0 $/p.u. | −0.35, 0.35 p.u./h |
2 | p.u. | 0.15 p.u. | 0.25, 20, 0 $/p.u. | −0.35, 0.35 p.u./h |
3 | 1 p.u. | 0.1 p.u. | 0.01, 40, 0 $/p.u. | −0.35, 0.35 p.u./h |
0.2 p.u. | 0.54 p.u. | 0.06 p.u. | 0.9 | p.u. | p.u. |
25 m/s | 20 m/s | 53 m/s | 0.7 kN/m2 | 2.1 kN/m2 |
Line ID | From Bus | To Bus | Reactance | MVA Rating |
---|---|---|---|---|
1 | 1 | 2 | 0.06 p.u. | 120 MVA |
2 | 1 | 5 | 0.22 p.u. | 65 MVA |
3 | 2 | 3 | 0.20 p.u. | 36 MVA |
4 | 2 | 4 | 0.18 p.u. | 65 MVA |
5 | 2 | 5 | 0.17 p.u. | 50 MVA |
6 | 3 | 4 | 0.17 p.u. | 65 MVA |
7 | 4 | 5 | 0.04 p.u. | 45 MVA |
8 | 4 | 7 | 0.21 p.u. | 55 MVA |
9 | 4 | 9 | 0.56 p.u. | 32 MVA |
10 | 5 | 6 | 0.25 p.u. | 45 MVA |
11 | 6 | 11 | 0.20 p.u. | 18 MVA |
12 | 6 | 12 | 0.26 p.u. | 32 MVA |
13 | 6 | 13 | 0.13 p.u. | 32 MVA |
14 | 7 | 8 | 0.18 p.u. | 32 MVA |
15 | 7 | 9 | 0.11 p.u. | 32 MVA |
16 | 9 | 10 | 0.08 p.u. | 32 MVA |
17 | 9 | 14 | 0.27 p.u. | 32 MVA |
18 | 10 | 11 | 0.19 p.u. | 12 MVA |
19 | 12 | 13 | 0.20 p.u. | 12 MVA |
20 | 13 | 14 | 0.35 p.u. | 12 MVA |
Strategy | ||||
---|---|---|---|---|
non-robust strategy | 0$ | 0$ | 2.31e5$ | 2.31e5$ |
proposed strategy | 0$ | 0$ | 0$ | 0$ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, B.; Wang, D.; Wang, C.; Li, Q.; Hu, Y.; Jia, Y. Emergency Dispatch Strategy Considering Spatiotemporal Evolution of Power Grid Failures Under Typhoon Conditions. Appl. Sci. 2024, 14, 10368. https://doi.org/10.3390/app142210368
Ren B, Wang D, Wang C, Li Q, Hu Y, Jia Y. Emergency Dispatch Strategy Considering Spatiotemporal Evolution of Power Grid Failures Under Typhoon Conditions. Applied Sciences. 2024; 14(22):10368. https://doi.org/10.3390/app142210368
Chicago/Turabian StyleRen, Bixing, Dajiang Wang, Chenggen Wang, Qiang Li, Yingjie Hu, and Yongyong Jia. 2024. "Emergency Dispatch Strategy Considering Spatiotemporal Evolution of Power Grid Failures Under Typhoon Conditions" Applied Sciences 14, no. 22: 10368. https://doi.org/10.3390/app142210368
APA StyleRen, B., Wang, D., Wang, C., Li, Q., Hu, Y., & Jia, Y. (2024). Emergency Dispatch Strategy Considering Spatiotemporal Evolution of Power Grid Failures Under Typhoon Conditions. Applied Sciences, 14(22), 10368. https://doi.org/10.3390/app142210368