Partial Discharge Signal Denoising Algorithm Based on Aquila Optimizer–Variational Mode Decomposition and K-Singular Value Decomposition
Abstract
:1. Introduction
2. Basic Theory
2.1. VMD Decomposition Principle
2.1.1. Basic Principle
2.1.2. Optimizing Parameters—AO-VMD
2.1.3. Selecting IMFs and Reconstructing the Signal-Kurtosis
2.2. Sparse Dictionary Learning
2.2.1. Sparse Decomposition
2.2.2. Dictionary Learning
2.2.3. Denoising Algorithm Based on AO-VMD and K-SVD Flowchart
3. Simulation Analysis of PD Signal Denoising
3.1. Simulation Signal Generation
3.2. AO-VMD Simulation
3.3. K-SVD Simulation
4. Comparation of the Denoising Effect
5. Denoising Analysis of the Actual PD Signal
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PD | Partial Discharge |
VMD | Variation Mode Decomposition |
OMP | Orthogonal Matching Pursuit |
EMD | Empirical mode decomposition |
SVD | Singular Value Decomposition |
K-SVD | K-Singular Value Decomposition |
SNR | Signal-to-Noise Ratio |
RMSE | Root Mean Square Error |
NCC | Normalized Cross-Correlation |
NRR | Noise Reduction Ratio |
AEEMD | Adaptive Ensemble Empirical Mode Decomposition |
AWMST | Adaptive Wavelet Multilevel Soft Threshold |
AO | Adaptive Optimization |
References
- Fang, W.; Chen, G.; Li, W.; Xu, M.; Xie, W.; Chen, C.; Wang, W.; Zhu, Y. A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge. Sensors 2023, 23, 6763. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, P.; Zhao, Y.; Sun, Y. A Denoising Method for Mining Cable PD Signal Based on Genetic Algorithm Optimization of VMD and Wavelet Threshold. Sensors 2022, 22, 9386. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, H.; Zhou, W.; Yu, J.; Wang, L.; Yang, S.; Hu, S. Background Noise of Partial Discharge Detection and Its Suppression in Complex Electromagnetic Environment. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018. [Google Scholar]
- Jahangir, H.; Hajipour, E.; Vakilian, M.; Akbari, A.; Blackburn, T.; Phung, B.T. A method to capture and de-noise partial discharge pulses using discrete wavelet transform and ANFIS. Int. Trans. Electr. Energy Syst. 2014, 25, 2696–2712. [Google Scholar] [CrossRef]
- Lin, M.-K.; Tai, C.; Tang, Y.-W.; Su, C.-C. Partial discharge signal extracting using the empirical mode decomposition with wavelet transform. In Proceedings of the 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 1–4 November 2011. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, J.; Wang, Y.; He, R.; Wang, J.; Geng, Y. Novel denoizing method for partial discharge signals using singular value decomposition and spectral subtraction. IET Sci. Meas. Technol. 2022, 17, 105–114. [Google Scholar] [CrossRef]
- Yang, X.; Huang, H.; Shu, Q.; Zhang, D.; Chen, B. Partial Discharge Signal Extraction Method Based on EDSSV and Low Rank RBF Neural Network. IEEE Access 2021, 9, 9744–9752. [Google Scholar] [CrossRef]
- Jin, T.; Li, Q.; Mohamed, M.A. A Novel Adaptive EEMD Method for Switchgear Partial Discharge Signal Denoising. IEEE Access 2019, 7, 58139–58147. [Google Scholar] [CrossRef]
- Onuki, M.; Tanaka, Y. SVD for Very Large Matrices: An Approach with Polar Decomposition and Polynomial Approximation. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 954–963. [Google Scholar] [CrossRef]
- Sun, C.; Ju, P.; Li, D. Research on Partial Discharge Signal Denoising Based on Adaptive Ensemble Empirical Mode Decomposition Algorithm. Electr. Technol. 2022, 23, 67–72+78. [Google Scholar]
- Lei, Z.; Wang, F.; Li, C. A Denoising Method of Partial Discharge Signal Based on Improved SVD-VMD. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 2107–2116. [Google Scholar] [CrossRef]
- Sun, S.; Sun, Y.; Li, Y.; Ma, S.; Zhang, L.; Hu, Y. An Adaptive Wavelet Multilevel Soft Threshold Algorithm for Denoising Partial Discharge Signals. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019; pp. 1874–1878. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, J. Autoregressive model-enhanced variational mode decomposition for mechanical fault detection. IET Sci. Meas. Technol. 2019, 13, 843–851. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Li, J.; Xing, Z. Rail Corrugation Identification Method Based on Parameter optimization VMD and SPWVD. In Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 9–11 May 2019; pp. 110–115. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J. A New Feature Extraction for Rolling Bearing Using Sparse Representation Based on Improved K-singular Value Decomposition and VMD. In Proceedings of the 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO), Guangzhou, China, 20–22 May 2021; pp. 27–31. [Google Scholar] [CrossRef]
- De Azevedo Silva, F.T.; De Oliveira Mota, H. Partial discharge signal processing using overcomplete dictionaries and sparse representations. In Proceedings of the 2017 IEEE Electrical Insulation Conference (EIC), Baltimore, MD, USA, 11–14 June 2017; pp. 388–391. [Google Scholar] [CrossRef]
- Avelar, A.S.O.; Vasconcelos, F.H.; Mota, H.D. Partial Discharge Signal Denoising Using Morphological Component Analysis. In Proceedings of the 2019 4th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), Sao Paulo, Brazil, 26–30 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Chen, Z.; Zhou, Y.; Li, F.; Chi, C. Wind power interval prediction based on variational mode decomposition and the fast gate recurrent unit. Front. Energy Res. 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Di, X.; Liu, S.; Li, D.; Ma, W.; Mei, X. AC Series Arc Fault Diagnosis Method Based on AO-VMD Multidimensional Feature Extraction. J. Phys. 2023, 2636, 012024. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, W.; Yin, W.; Xu, A.; Zhu, H. Feature Extraction Algorithm Using a Correlation Coefficient Combined with the VMD and Its Application to the GPS and GRACE. IEEE Access 2021, 9, 17507–17519. [Google Scholar] [CrossRef]
- Cai, C.; Li, Y.; Su, Z.; Zhu, T.; He, Y. Short-Term Electrical Load Forecasting Based on VMD and GRU-TCN Hybrid Network. Appl. Sci. 2022, 12, 6647. [Google Scholar] [CrossRef]
- Chan, J.Q.; Illias, H.A.; Othman, M. Partial Discharge Localization Techniques: A Review of Recent Progress. Energies 2023, 16, 2863. [Google Scholar] [CrossRef]
- Mathis, H. On the kurtosis of digitally modulated signals with timing offsets. In Proceedings of the 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications, Taiwan, China, 20–23 March 2001. [Google Scholar] [CrossRef]
- Morales-Perez, C.; Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Martínez-Carballido, J. Technique for Signal Noise Reduction based on Sparse Representation. In Proceedings of the 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 14–16 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Sofuoglu, S.E.; Aviyente, S. Sparse Discriminative Tensor Dictionary Learning for Object Classification. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018; pp. 1341–1345. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Guojun, L.; Yong, W.; Le, L.; Shaofeng, G.; Haiqing, N.; Xuemei, W. Suppressing white noise in PD signal based on wavelet entropy and improved threshold function. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017; pp. 475–479. [Google Scholar] [CrossRef]
- Yang, X.; Cai, Y.; Zhang, J.; Cheng, L.; Wang, F. Periodic Narrow-Band Noise Denoising of Partial Discharge Signal Through Time-Frequency Analysis. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 2248–2251. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, S.; Xu, H. Non-stationary Signals Processing Based on STFT. In Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 16–18 August 2007; pp. 3-301–3-304. [Google Scholar] [CrossRef]
- Khayam, U.; Surandaka, Y.A. Design, implementation, and testing of partial discharge signal processing system. In Proceedings of the 2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE), Yogyakarta, Indonesia, 6–7 October 2016; pp. 175–179. [Google Scholar] [CrossRef]
- Rajesh, K.; Negi, A. Heuristic Based Learning of Parameters for Dictionaries in Sparse Representations. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1013–1019. [Google Scholar] [CrossRef]
- Ahmed, Z.; Lehtonen, M.; Ghulam, M.; Hussain, A. Analysis and De-Noising of Partial Discharge Signals in Medium Voltage XLPE Cables. Available online: https://core.ac.uk/download/pdf/80718741.pdf (accessed on 16 May 2016).
Model | Equation |
---|---|
Single exponential decay model: | |
Double exponential decay model: | |
Single exponential oscillation decay model: | |
Double exponential oscillation decay model: |
Sequences of Signal | A (mV) | (s) | (MHz) | Sample Frequency (MHz) |
---|---|---|---|---|
I | 0.8 | 0.02 | 50 | 1 |
II | 0.3 | 0.03 | 50 | 1 |
Number of Decomposed Modes | Penalty Factor |
---|---|
8 | 1344 |
IMF Component | IMF1 | IMF2 | IMF3 | IMF4 |
---|---|---|---|---|
Kurtosis | 2.7609 | 3.2024 | 2.9276 | 2.8780 |
IMF Component | IMF5 | IMF6 | IMF7 | IMF8 |
Kurtosis | 3.2310 | 12.3905 | 1.5268 | 2.1598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Liu, Z.; Bi, X. Partial Discharge Signal Denoising Algorithm Based on Aquila Optimizer–Variational Mode Decomposition and K-Singular Value Decomposition. Appl. Sci. 2024, 14, 2755. https://doi.org/10.3390/app14072755
Zhong J, Liu Z, Bi X. Partial Discharge Signal Denoising Algorithm Based on Aquila Optimizer–Variational Mode Decomposition and K-Singular Value Decomposition. Applied Sciences. 2024; 14(7):2755. https://doi.org/10.3390/app14072755
Chicago/Turabian StyleZhong, Jun, Zhenyu Liu, and Xiaowen Bi. 2024. "Partial Discharge Signal Denoising Algorithm Based on Aquila Optimizer–Variational Mode Decomposition and K-Singular Value Decomposition" Applied Sciences 14, no. 7: 2755. https://doi.org/10.3390/app14072755
APA StyleZhong, J., Liu, Z., & Bi, X. (2024). Partial Discharge Signal Denoising Algorithm Based on Aquila Optimizer–Variational Mode Decomposition and K-Singular Value Decomposition. Applied Sciences, 14(7), 2755. https://doi.org/10.3390/app14072755