A Parallel Monte Carlo Algorithm for the Life Cycle Asset Allocation Problem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Asset Allocation Model
2.1.1. Utility Function Selection
2.1.2. Financial Asset
2.1.3. Labor Income Patterns in China: Insights from the China General Social Survey (CGSS)
2.1.4. Optimization Problem
- (1)
- Before maturity of the product:
- (2)
- Obtain the Bellman equation:
2.2. Description of Monte Carlo-Based Algorithm for Solving the Bellman Equation
Algorithm 1: Monte Carlo Method for Solving the Bellman Equation |
5: For do , while for , for . do 11: end for 15: end for |
3. Results
3.1. Glide Path
3.2. Parallel Monte Carlo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Li, C.; Chen, Y.; Lu, Z. A Survey of Models and Algorithms of Numerical Methods Based on Pension Target Funds. Front. Data Comput. 2023, 5, 85–96. (In Chinese) [Google Scholar]
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Modigliani, F. The life cycle hypothesis of saving, the demand for wealth and the supply of capital. Soc. Res. 1966, 33, 160–217. [Google Scholar]
- Merton, R.C. Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat. 1969, 51, 247–257. [Google Scholar] [CrossRef]
- Bodie, Z.; Merton, R.C.; Samuelson, W.F. Labor supply flexibility and portfolio choice in a life cycle model. J. Econ. Dyn. Control 1992, 16, 427–449. [Google Scholar] [CrossRef]
- Cocco, J.F.; Gomes, F.J.; Maenhout, P.J. Consumption and portfolio choice over the life cycle. Rev. Financ. Stud. 2005, 18, 491–533. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Feldstein, M. Risk Aspects of Investment-Based Social Security Reform; University of Chicago Press: Chicago, IL, USA, 2000. [Google Scholar]
- Gomes, F.; Michaelides, A. Life-cycle asset allocation: A model with borrowing constraints, uninsurable labor income risk and stock-market participation costs. Uninsurable Labor Income Risk Stock. Mark. Particip. Costs 2002. [Google Scholar] [CrossRef]
- Gomes, F.; Michaelides, A. Optimal life-cycle asset allocation: Understanding the empirical evidence. J. Financ. 2005, 60, 869–904. [Google Scholar] [CrossRef]
- Blake, D.; Wright, D.; Zhang, Y. Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners. J. Econ. Dyn. Control 2014, 38, 105–124. [Google Scholar] [CrossRef]
- Zhao, Z. Variants of Bellman equation on reinforcement learning problems. In Proceedings of the 2nd International Conference on Artificial Intelligence, Automation, and High-Performance Computing (AIAHPC 2022), Zhuhai, China, 25–27 February 2022; Volume 12348, pp. 104–111. [Google Scholar]
- Rantzer, A. Explicit solution to Bellman equation for positive systems with linear cost. In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico, 6–9 December 2022; pp. 2678–2683. [Google Scholar]
- Cosso, A.; Gozzi, F.; Kharroubi, I.; Pham, H.; Rosestolato, M. Master Bellman equation in the Wasserstein space: Uniqueness of viscosity solutions. Trans. Am. Math. Soc. 2024, 377, 31–83. [Google Scholar] [CrossRef]
- Gerstenberg, J.; Neininger, R.; Spiegel, D. On solutions of the distributional Bellman equation. arXiv 2022, arXiv:2202.00081. [Google Scholar] [CrossRef]
- Shigeta, Y. A continuous-time utility maximization problem with borrowing constraints in macroeconomic heterogeneous agent models: A case of regular controls under Markov chain uncertainty. Available SSRN 2023, 4510320. [Google Scholar] [CrossRef]
- Fei, Y.; Yang, Z.; Chen, Y.; Wang, Z. Exponential Bellman equation and improved regret bounds for risk-sensitive reinforcement learning. Adv. Neural Inf. Process. Syst. 2021, 34, 20436–20446. [Google Scholar]
- Fei, Y.; Yang, Z.; Chen, Y.; Wang, Z.; Xie, Q. Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret. Adv. Neural Inf. Process. Syst. 2020, 33, 22384–22395. [Google Scholar]
- Fei, Y.; Yang, Z.; Wang, Z. Risk-sensitive reinforcement learning with function approximation: A debiasing approach. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 3198–3207. [Google Scholar]
- Jones, M.; Peet, M.M. A generalization of Bellman’s equation with application to path planning, obstacle avoidance and invariant set estimation. Automatica 2021, 127, 109510. [Google Scholar] [CrossRef]
- Beck, C.; Jentzen, A.; Kleinberg, K.; Kruse, T. Nonlinear Monte Carlo methods with polynomial runtime for Bellman equations of discrete time high-dimensional stochastic optimal control problems. arXiv 2023, arXiv:2303.03390. [Google Scholar]
- Beck, C.; Jentzen, A.; Kruse, T. Nonlinear Monte Carlo methods with polynomial runtime for high-dimensional iterated nested expectations. arXiv 2020, arXiv:2009.13989. [Google Scholar]
- Becker, S.; Cheridito, P.; Jentzen, A.; Welti, T. Solving high-dimensional optimal stopping problems using deep learning. Eur. J. Appl. Math. 2021, 32, 470–514. [Google Scholar] [CrossRef]
- Gonon, L. Deep neural network expressivity for optimal stopping problems. Financ. Stoch. 2024, 28, 865–910. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, C.; Mu, C. An overview on algorithms and applications of deep reinforcement learning. Chin. J. Intell. Sci. Technol. 2020, 2, 314–326. [Google Scholar]
- Kristensen, D.; Mogensen, P.K.; Moon, J.M.; Schjerning, B. Solving dynamic discrete choice models using smoothing and sieve methods. J. Econom. 2021, 223, 328–360. [Google Scholar] [CrossRef]
- Silver, D.; Veness, J. Monte-Carlo planning in large POMDPs. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6-9 December 2010; p. 23. [Google Scholar]
- Fatica, M.; Phillips, E. Pricing American options with least squares Monte Carlo on GPUs. In Proceedings of the 6th Workshop on High Performance Computational Finance, New York, NY, USA, 18 November 2013; pp. 1–6. [Google Scholar]
- Abbas-Turki, L.A.; Vialle, S.; Lapeyre, B.; Mercier, P. Pricing derivatives on graphics processing units using Monte Carlo simulation. Concurr. Comput. Pract. Exp. 2014, 26, 1679–1697. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, K.; Xie, Q.; Basar, T. Poly-hoot: Monte-carlo planning in continuous space mdps with non-asymptotic analysis. Adv. Neural Inf. Process. Syst. 2020, 33, 4549–4559. [Google Scholar]
- Weng, J.; Lin, M.; Huang, S.; Liu, B.; Makoviichuk, D.; Makoviychuk, V.; Liu, Z.; Song, Y.; Luo, T.; Jiang, Y.; et al. Envpool: A highly parallel reinforcement learning environment execution engine. Adv. Neural Inf. Process. Syst. 2022, 35, 22409–22421. [Google Scholar]
- Cairns, A.J.; Blake, D.; Dowd, K. Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans. J. Econ. Dyn. Control 2006, 30, 843–877. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
0.04 | |
0.2 | |
5.0 | |
0.2 | |
0.96 | |
20 | |
65 | |
T | 120 |
0.99 |
Server | Parameters |
---|---|
Nodes | AMD EPYC 7773X 64-Core Processor |
Operating | Centos7.6 |
MPI | hpcx-2.4.1 |
Network | HDR Infiniband (200 Gb) |
Thread Number | Computing Time (min) | |
---|---|---|
Value Iteration Method | 1 | 41.15 |
Our Method (Proposed) | 1 | 29.88 |
2 | 15.74 | |
4 | 8.06 | |
8 | 4.17 | |
16 | 2.69 | |
32 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, C.; Li, X.; Lu, Z. A Parallel Monte Carlo Algorithm for the Life Cycle Asset Allocation Problem. Appl. Sci. 2024, 14, 10372. https://doi.org/10.3390/app142210372
Yang X, Li C, Li X, Lu Z. A Parallel Monte Carlo Algorithm for the Life Cycle Asset Allocation Problem. Applied Sciences. 2024; 14(22):10372. https://doi.org/10.3390/app142210372
Chicago/Turabian StyleYang, Xueying, Chen Li, Xu Li, and Zhonghua Lu. 2024. "A Parallel Monte Carlo Algorithm for the Life Cycle Asset Allocation Problem" Applied Sciences 14, no. 22: 10372. https://doi.org/10.3390/app142210372
APA StyleYang, X., Li, C., Li, X., & Lu, Z. (2024). A Parallel Monte Carlo Algorithm for the Life Cycle Asset Allocation Problem. Applied Sciences, 14(22), 10372. https://doi.org/10.3390/app142210372