Cognitive Diagnosis Method via Q-Matrix-Embedded Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Concepts and Symbol Definition
2.1.1. Q-Matrix
2.1.2. Interaction Q-Matrix
2.1.3. Skill Mastery Patterns and Observed Response Patterns
2.2. Q-Matrix Constraint-Based Neural Network
Algorithm 1: Algorithm description for our proposed Dual Q-Net |
3. Experiments and Results
3.1. Agreement Evaluation Metrics
3.2. Simulation Studies
3.2.1. Simulation Datasets
3.2.2. Results
- Result I: training process results of different neural network models
- Result II: Result comparison of different methods on simulated datasets
3.3. Real Data Illustration
3.3.1. Real Datasets
3.3.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Templin, J.L.; Henson, R.A. Measurement of psychological disorders using cognitive diagnosis models. Psychol. Methods 2006, 11, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Maas, L.; Brinkhuis, M.J.S.; Kester, L.; Wijngaards-de Meij, L. Cognitive Diagnostic Assessment in University Statistics Education: Valid and Reliable Skill Measurement for Actionable Feedback Using Learning Dashboards. Appl. Sci. 2022, 12, 4809. [Google Scholar] [CrossRef]
- Song, L.; He, M.; Shang, X.; Yang, C.; Liu, J.; Yu, M.; Lu, Y. A deep cross-modal neural cognitive diagnosis framework for modeling student performance. Expert Syst. Appl. 2023, 230, 120675. [Google Scholar] [CrossRef]
- Jiang, B.; Li, X.; Yang, S.; Kong, Y.; Cheng, W.; Hao, C.; Lin, Q. Data-Driven Personalized Learning Path Planning Based on Cognitive Diagnostic Assessments in MOOCs. Appl. Sci. 2022, 12, 3982. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Douglas, J. A Nonparametric Approach to Cognitive Diagnosis by Proximity to Ideal Response Patterns. J. Classif. 2013, 30, 225–250. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Sun, Y.; Bian, Y. Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method. Psychometrika 2017, 83, 355–375. [Google Scholar] [CrossRef]
- de la Torre, J. The Generalized DINA Model Framework. Psychometrika 2011, 76, 179–199. [Google Scholar] [CrossRef]
- Ma, W.; de la Torre, J. GDINA: An R Package for Cognitive Diagnosis Modeling. J. Stat. Softw. 2020, 93, 1–26. [Google Scholar] [CrossRef]
- Zhan, P. Deterministic Input, Noisy Mixed Modeling for Identifying Coexisting Condensation Rules in Cognitive Diagnostic Assessments. J. Intell. 2023, 11, 55. [Google Scholar] [CrossRef]
- Liu, Q. Towards a New Generation of Cognitive Diagnosis. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), Montreal, QC, Canada, 19–27 August 2021. [Google Scholar] [CrossRef]
- Cui, Y.; Gierl, M.; Guo, Q. Statistical classification for cognitive diagnostic assessment: An artificial neural network approach. Educ. Psychol. 2015, 36, 1065–1082. [Google Scholar] [CrossRef]
- Wen, H.; Liu, Y.; Zhao, N. Longitudinal Cognitive Diagnostic Assessment Based on the HMM/ANN Model. Front. Psychol. 2020, 11, 2145. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, Q.; Chen, E.; Huang, Z.; Chen, Y.; Yin, Y.; Huang, Z.; Wang, S. Neural Cognitive Diagnosis for Intelligent Education Systems. Proc. AAAI Conf. Artif. Intell. 2020, 34, 6153–6161. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Culpepper, S.A.; Chen, Y. Inferring the Number of Attributes for the Exploratory DINA Model. Psychometrika 2021, 86, 30–64. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Bradshaw, L.P. A Semi-supervised Learning-Based Diagnostic Classification Method Using Artificial Neural Networks. Front. Psychol. 2021, 11, 618336. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.L.; Zhu, Y.F.; Lin, H.J.; Cai, Y. Modification of Tatsuoka’s Q Matrix Theory: Modif. Tatsuoka’s Q Matrix Theory. Acta Psychol. Sin. 2009, 41, 175–181. [Google Scholar] [CrossRef]
- Culpepper, S.A. Estimating the Cognitive Diagnosis Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset. Psychometrika 2018, 84, 333–357. [Google Scholar] [CrossRef]
- Biggs, N. The roots of combinatorics. Hist. Math. 1979, 6, 109–136. [Google Scholar] [CrossRef]
- Xin, T.; Zhang, J. Local Equating of Cognitively Diagnostic Modeled Observed Scores. Appl. Psychol. Meas. 2014, 39, 44–61. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representation by error propagation. Parallel Distrib. Process. 1986, 1, 318–362. [Google Scholar]
- Ma, W.; Guo, W. Cognitive diagnosis models for multiple strategies. Br. J. Math. Stat. Psychol. 2019, 72, 370–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ma, W.; Cai, Y.; Tu, D. A general nonparametric classification method for multiple strategies in cognitive diagnostic assessment. Behav. Res. Methods 2023, 56, 723–735. [Google Scholar] [CrossRef]
- Chen, D.; Yan, C. Classification of Attribute Mastery Patterns Using Deep Learning. Open J. Model. Simul. 2021, 09, 198–210. [Google Scholar] [CrossRef]
- Sen, S.; Cohen, A.S. Sample Size Requirements for Applying Diagnostic Classification Models. Front. Psychol. 2021, 11, 621251. [Google Scholar] [CrossRef] [PubMed]
- Kreitchmann, R.S.; de la Torre, J.; Sorrel, M.A.; Nájera, P.; Abad, F.J. Improving reliability estimation in cognitive diagnosis modeling. Behav. Res. Methods 2022, 55, 3446–3460. [Google Scholar] [CrossRef] [PubMed]
- Tatsuoka, C. Data Analytic Methods for Latent Partially Ordered Classification Models. J. R. Stat. Soc. Ser. C Appl. Stat. 2002, 51, 337–350. [Google Scholar] [CrossRef]
- Heller, J.; Wickelmaier, F. Minimum Discrepancy Estimation in Probabilistic Knowledge Structures. Electron. Notes Discret. Math. 2013, 42, 49–56. [Google Scholar] [CrossRef]
- de la Torre, J.; Douglas, J.A. Higher-order latent trait models for cognitive diagnosis. Psychometrika 2004, 69, 333–353. [Google Scholar] [CrossRef]
- Balamuta, J.J.; Culpepper, S.A.; Douglas, J.A. edmdata: Data Sets for Psychometric Modeling. R Package Version 1.2.0. 2021. Available online: https://mirrors.pku.edu.cn/CRAN/web/packages/edmdata/index.html (accessed on 25 July 2021).
- Philipp, M.; Strobl, C.; de la Torre, J.; Zeileis, A. On the Estimation of Standard Errors in Cognitive Diagnosis Models. J. Educ. Behav. Stat. 2017, 43, 88–115. [Google Scholar] [CrossRef]
- Min, B.; Ross, H.; Sulem, E.; Veyseh, A.P.B.; Nguyen, T.H.; Sainz, O.; Agirre, E.; Heintz, I.; Roth, D. Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- de la Torre, J. DINA Model and Parameter Estimation: A Didactic. J. Educ. Behav. Stat. 2009, 34, 115–130. [Google Scholar] [CrossRef]
- Xiong, J.; Luo, F.; Ding, S.; Duan, H. A Cognitive Diagnosis Method Based on Mahalanobis Distance. In Quantitative Psychology; Springer International Publishing: Chem, Switzerland, 2018; pp. 319–333. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P. Refined Learning Tracking with a Longitudinal Probabilistic Diagnostic Model. Educ. Meas. Issues Pract. 2020, 40, 44–58. [Google Scholar] [CrossRef]
Data Type | Data Name | g,s Levels | Q-Matrixes | Sim Models |
---|---|---|---|---|
sim data | HSD1 | low | DINA | |
LSD1 | high | |||
HSD2 | low | GDINA | ||
LSD2 | high |
Data | N | DINA | GDINA | NPC | GNPC | MLP | ANN | Dual Q-Net |
---|---|---|---|---|---|---|---|---|
HSD1 | 100 | 0.990 | 0.986 | 0.987 | 0.987 | 0.992 | 0.994 | 0.995 |
200 | 0.993 | 0.990 | 0.989 | 0.989 | 0.993 | 0.995 | 0.995 | |
300 | 0.990 | 0.989 | 0.988 | 0.988 | 0.991 | 0.994 | 0.994 | |
500 | 0.993 | 0.992 | 0.987 | 0.988 | 0.991 | 0.994 | 0.995 | |
LSD1 | 100 | 0.848 | 0.813 | 0.858 | 0.846 | 0.891 | 0.896 | 0.903 |
200 | 0.870 | 0.832 | 0.859 | 0.850 | 0.880 | 0.884 | 0.897 | |
300 | 0.874 | 0.845 | 0.858 | 0.852 | 0.877 | 0.880 | 0.889 | |
500 | 0.893 | 0.859 | 0.860 | 0.855 | 0.878 | 0.881 | 0.890 | |
HSD2 | 100 | 0.784 | 0.982 | 0.752 | 0.958 | 0.998 | 0.997 | 0.997 |
200 | 0.765 | 0.987 | 0.756 | 0.971 | 0.995 | 0.997 | 0.997 | |
300 | 0.728 | 0.989 | 0.752 | 0.979 | 0.993 | 0.995 | 0.996 | |
500 | 0.751 | 0.991 | 0.755 | 0.984 | 0.994 | 0.995 | 0.997 | |
LSD2 | 100 | 0.734 | 0.821 | 0.757 | 0.836 | 0.948 | 0.950 | 0.970 |
200 | 0.707 | 0.840 | 0.750 | 0.847 | 0.942 | 0.951 | 0.967 | |
300 | 0.719 | 0.848 | 0.753 | 0.845 | 0.922 | 0.938 | 0.958 | |
500 | 0.697 | 0.868 | 0.752 | 0.847 | 0.912 | 0.926 | 0.944 |
Data | N | DINA | GDINA | NPC | GNPC | MLP | ANN | Dual Q-Net |
---|---|---|---|---|---|---|---|---|
HSD1 | 100 | 0.975 | 0.965 | 0.971 | 0.971 | 0.977 | 0.983 | 0.984 |
200 | 0.978 | 0.974 | 0.974 | 0.974 | 0.981 | 0.985 | 0.986 | |
300 | 0.974 | 0.972 | 0.972 | 0.972 | 0.972 | 0.981 | 0.983 | |
500 | 0.977 | 0.976 | 0.974 | 0.976 | 0.976 | 0.982 | 0.984 | |
LSD1 | 100 | 0.620 | 0.545 | 0.669 | 0.627 | 0.709 | 0.720 | 0.741 |
200 | 0.680 | 0.597 | 0.679 | 0.640 | 0.690 | 0.700 | 0.729 | |
300 | 0.682 | 0.615 | 0.674 | 0.643 | 0.681 | 0.689 | 0.707 | |
500 | 0.724 | 0.644 | 0.678 | 0.648 | 0.680 | 0.685 | 0.710 | |
HSD2 | 100 | 0.271 | 0.914 | 0.240 | 0.808 | 0.990 | 0.987 | 0.985 |
200 | 0.224 | 0.935 | 0.241 | 0.870 | 0.611 | 0.983 | 0.985 | |
300 | 0.193 | 0.946 | 0.236 | 0.899 | 0.965 | 0.974 | 0.982 | |
500 | 0.206 | 0.958 | 0.239 | 0.958 | 0.968 | 0.976 | 0.982 | |
LSD2 | 100 | 0.212 | 0.362 | 0.234 | 0.401 | 0.760 | 0.766 | 0.856 |
200 | 0.146 | 0.421 | 0.216 | 0.434 | 0.736 | 0.775 | 0.847 | |
300 | 0.164 | 0.456 | 0.224 | 0.425 | 0.664 | 0.716 | 0.802 | |
500 | 0.138 | 0.499 | 0.222 | 0.423 | 0.624 | 0.677 | 0.746 |
Data | N | Metrics | DINA | GDINA | NPC | GNPC | MLP | ANN | Dual Q-Net |
---|---|---|---|---|---|---|---|---|---|
EPTT | 100 | AAR | 0.953 | 0.960 | 0.940 | 0.938 | 0.977 | 0.978 | 0.987 |
PAR() | 0.840 | 0.862 | 0.809 | 0.773 | 0.914 | 0.915 | 0.953 | ||
PAR() | 0.972 | 0.981 | 0.957 | 0.981 | 0.996 | 0.995 | 0.996 | ||
200 | AAR | 0.961 | 0.972 | 0.944 | 0.946 | 0.968 | 0.974 | 0.983 | |
PAR() | 0.861 | 0.903 | 0.818 | 0.800 | 0.881 | 0.903 | 0.937 | ||
PAR() | 0.985 | 0.986 | 0.961 | 0.987 | 0.991 | 0.993 | 0.994 | ||
300 | AAR | 0.962 | 0.983 | 0.940 | 0.942 | 0.969 | 0.973 | 0.985 | |
PAR() | 0.865 | 0.937 | 0.808 | 0.781 | 0.887 | 0.899 | 0.943 | ||
PAR() | 0.982 | 0.994 | 0.956 | 0.986 | 0.991 | 0.992 | 0.997 | ||
FRAC | 100 | AAR | 0.935 | 0.882 | 0.850 | 0.857 | 0.956 | 0.955 | 0.979 |
PAR() | 0.606 | 0.416 | 0.388 | 0.351 | 0.699 | 0.687 | 0.837 | ||
PAR() | 0.895 | 0.725 | 0.686 | 0.663 | 0.951 | 0.958 | 0.993 | ||
200 | AAR | 0.956 | 0.886 | 0.850 | 0.829 | 0.962 | 0.963 | 0.973 | |
PAR() | 0.733 | 0.430 | 0.397 | 0.300 | 0.739 | 0.741 | 0.806 | ||
PAR() | 0.932 | 0.753 | 0.688 | 0.601 | 0.965 | 0.967 | 0.977 | ||
300 | AAR | 0.969 | 0.873 | 0.845 | 0.831 | 0.969 | 0.970 | 0.976 | |
PAR() | 0.787 | 0.363 | 0.392 | 0.317 | 0.779 | 0.786 | 0.826 | ||
PAR() | 0.967 | 0.700 | 0.684 | 0.594 | 0.978 | 0.980 | 0.981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Zhao, W.; Liu, F.; Guo, X.; Cheng, N.; Guo, Q.; Xu, X.; Duan, H. Cognitive Diagnosis Method via Q-Matrix-Embedded Neural Networks. Appl. Sci. 2024, 14, 10380. https://doi.org/10.3390/app142210380
Tao J, Zhao W, Liu F, Guo X, Cheng N, Guo Q, Xu X, Duan H. Cognitive Diagnosis Method via Q-Matrix-Embedded Neural Networks. Applied Sciences. 2024; 14(22):10380. https://doi.org/10.3390/app142210380
Chicago/Turabian StyleTao, Jinhong, Wei Zhao, Fengjuan Liu, Xiaoqing Guo, Nuo Cheng, Qian Guo, Xiaoqing Xu, and Hong Duan. 2024. "Cognitive Diagnosis Method via Q-Matrix-Embedded Neural Networks" Applied Sciences 14, no. 22: 10380. https://doi.org/10.3390/app142210380
APA StyleTao, J., Zhao, W., Liu, F., Guo, X., Cheng, N., Guo, Q., Xu, X., & Duan, H. (2024). Cognitive Diagnosis Method via Q-Matrix-Embedded Neural Networks. Applied Sciences, 14(22), 10380. https://doi.org/10.3390/app142210380