A Case Study Comparing Methods for Coal Thickness Identification in Complex Geological Conditions
Abstract
:1. Introduction
2. Geological Test
2.1. Seismic Geological Setting
2.2. Design Observation System
2.3. Static Correction
3. Methods
3.1. Seismic Wave Impedance Inversion Based on Well Log Constraints
3.2. Seismic Multi-Attribute Method
3.2.1. Attribute System Optimization
3.2.2. BP Neural Network Prediction Model
4. Results and Discussion
4.1. Impedance Inversion Result
4.2. Seismic Multi-Attribute Prediction Result
4.2.1. Attribute Optimization Result
4.2.2. BP Neural Network Prediction Result
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, F.; Fang, X.; Chen, N.; Liang, M.; Wu, G.; Zhang, F. Research on Three-Dimensional Shape Curve Reconstruction Technology for a Scraper Conveyor on an Intelligent Working Face. Sensors 2023, 23, 8755. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, Y.; Ranjith, P.G.; Zhang, K.; Zhang, H.; Chen, Y.; Li, M.; Li, P. New insights on ground control in intelligent mining with Internet of Things. Comput. Commun. 2020, 150, 788–798. [Google Scholar] [CrossRef]
- Oguadinma, O.; Reynaud, Y.; Prat, D.; Akpi, T.; Thackrey, S.; Lanisa, A.; Asta, M. Gravity tectonics controls on reservoir-scale sandbodies: Insights from 3D seismic geomorphology of the canyons buried in the upper slope of the Eastern Niger delta basin. Energy Geosci. 2024, 5, 05279. [Google Scholar] [CrossRef]
- Wu, B.; Kong, J.; Dong, S. Seismic attribute method for concealed collapse column identification in coal fields. Acta Geod. Geophys. 2020, 55, 11–21. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhao, N.; Chen, Q. Application of Seismic Attributes Using Image Fusion for Small Structure Interpretation in Coalmine. Appl. Mech. Mater. 2014, 3512, 2410–2413. [Google Scholar] [CrossRef]
- Suo, C.; Chang, S.; Peng, S.; Duan, R. Study and Application of Seismic Attributes on Coal Seam Thickness Prediction. Appl. Mech. Mater. 2011, 138, 492–497. [Google Scholar] [CrossRef]
- Widess, M. How thin is a thin bed? Geophysicists 1973, 38, 1176–1180. [Google Scholar] [CrossRef]
- Koefoed, O.; De, V. The linear properties of thin layers, with an application to synthetic seismograms over coal seams. Geophysics 1980, 45, 1254–1268. [Google Scholar] [CrossRef]
- Badel, M.; Angorani, S.; Panahi, M. The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Comput. Geosci. 2011, 37, 530–540. [Google Scholar] [CrossRef]
- Hu, Z.; Cao, L.; Wu, R.; Ji, G. Estimation method of coal channel Q value based on frequency shift phenomenon of transmitting channel wave. Explor. Geophys. 2023, 54, 79–87. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, G.; Wang, W. Precise prediction of the collapse column based on channel wave spectral disparity characteristics and velocity tomography imaging. J. Geophys. Eng. 2022, 19, 326–335. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, Y.; Wang, Y.; Pan, J.; Lu, J. Prediction models of coal thickness based on seismic attributions and their applications. Chin. J. Geophys. 2006, 49, 512–517, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y.; Wang, W.; Zhu, G.; Wang, P. Application of seismic multiattribute machine learning to determine coal strata thickness. J. Geophys. Eng. 2021, 18, 834–844. [Google Scholar] [CrossRef]
- Yin, H.; Chen, T.; Song, X. Methods for predicting the thickness of coal seams based on seismic attribute optimization and machine learning. Coal Geol. Explor. 2023, 51, 164–170, (In Chinese with English Abstract). [Google Scholar]
- Zou, G.; Xu, Z.; Peng, S.; Fan, F. Analysis of coal seam thickness and seismic wave amplitude: A wedge model. J. Appl. Geophys. 2018, 148, 245–255. [Google Scholar] [CrossRef]
- Russell, B.; Hampson, D.; Schuelke, J.; Quirein, J. Multiattribute seismic analysis. Lead. Edge 1997, 16, 1439–1444. [Google Scholar] [CrossRef]
- Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Najafi, M.; Moradkhani, H.; Wherry, S. Statistical Downscaling of Precipitation Using Machine Learning with Optimal Predictor Selection. J. Hydrol. Eng. 2011, 16, 650–664. [Google Scholar] [CrossRef]
- Li, W.; Yue, D.; Wang, W.; Wang, W.; Wu, S.; Li, J.; Chen, D. Fusing multiple frequency-decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs. J. Pet. Sci. Eng. 2019, 177, 1087–1102. [Google Scholar] [CrossRef]
- Liu, L.; Song, W.; Zeng, C.; Yang, X. Microseismic event detection and classification based on convolutional neural network. J. Appl. Geophys. 2021, 192, 104380. [Google Scholar] [CrossRef]
- Zhong, F.; Zhou, L.; Dai, R.; Yin, C.; Xu, L. Improvement and application of preprocessing technique for multitrace seismic impedance inversion. Appl. Geophys. 2021, 18, 54–62. [Google Scholar]
- Colabianchi, S.; Bernabei, M.; Costantino, F.; Romano, E.; Falegnami, A. MARLIN Method: Enhancing Warehouse Resilience in Response to Disruptions. Logistics 2023, 7, 95. [Google Scholar] [CrossRef]
- Mohamed, S.; Abdullah, A.; Abdulrahman, A. Removal of Intra-Array Statics in Seismic Arrays Due to Variable Topography and Positioning Errors. Appl. Sci. 2022, 12, 12810. [Google Scholar] [CrossRef]
- Vaezi, Y.; Baan, M. Interferometric time-lapse velocity analysis: Application to a salt-water disposal well in British Columbia, Canada. Geophys. J. Int. 2019, 219, 834–852. [Google Scholar] [CrossRef]
- Tomassi, A.; Milli, S.; Tentori, D. Synthetic seismic forward modeling of a high-frequency depositional sequence: The example of the Tiber depositional sequence (Central Italy). Mar. Pet. Geol. 2024, 160, 106624. [Google Scholar] [CrossRef]
- Gholami, A. Nonlinear multichannel impedance inversion by total-variation regularization. Geophysics 2015, 80, R217–R224. [Google Scholar] [CrossRef]
- Han, H.; Yun, P.; He, X.; Liu, R.; Li, C. Fast Reconstruction of Velocity Structure for Seismic Logging. Appl. Mech. Mater. 2014, 3013, 1233–1237. [Google Scholar] [CrossRef]
- Wang, L.; Wu, C.; Fan, L.; Wang, M. Investigation of wave reflection at the joint with different wave impedances on two sides. Waves Random Complex Media 2023, 33, 237–253. [Google Scholar] [CrossRef]
- Dell’Aversana, P.; Bernasconi, G.; Miotti, F.; Rovetta, D. Joint inversion of rock properties from sonic, resistivity and density well-log measurements. Geophys. Prospect. 2011, 59, 1144–1154. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, C.; Zhang, B.; Shi, F. Cement bond quality evaluation based on acoustic variable density logging. Pet. Explor. Dev. 2016, 43, 514–521. [Google Scholar] [CrossRef]
- Isaac, H.; Lawton, C. A case study showing the value of multioffset synthetic seismograms in seismic data interpretation. Interpretation 2016, 4, T455–T459. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Lu, W.; Li, H. Physics-Constrained Seismic Impedance Inversion Based on Deep Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Carter, D. 3-D Seismic Geomorpholoy: Insights into Fluvial Reservoir Deposition and Performance, Widuri Field, Java Sea. AAPG Bull. 2003, 87, 909–934. [Google Scholar] [CrossRef]
- Balch, A.H. Color Sonagrams: A New Dimension in Seismic Data Interpretation. Geophysics 1971, 36, 1074–1098. [Google Scholar] [CrossRef]
- Barnes; Arthur, E. Redundant and Useless Seismic Attributes. Geophysics 2007, 72, 33–38. [Google Scholar] [CrossRef]
- Zhao, T.; Li, F.; Marfurt, K. Seismic attribute selection for unsupervised seismic facies analysis using user-guided data adaptive weights. Geophysics 2018, 83, 31–44. [Google Scholar] [CrossRef]
- Li, H.; Han, M. Forecast of China’s natural gas demand based on the double-logarithmic model with stepwise regression method. Energy Sources, Part A: Recovery. Util. Environ. Eff. 2023, 45, 8491–8506. [Google Scholar]
- Brown, W.; Gedeon, T.; Groves, D.; Barnes, R. Artificial neural networks: A new method for mineral prospectivity mapping. J. Geol. Soc. Aust. 2000, 47, 757–770. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, N.; Tian, G.; Yang, J.; Wang, D.; Jin, Z. Unsupervised-learning based self-organizing neural network using multi-component seismic data: Application to Xujiahe tight-sand gas reservoir in China. J. Pet. Sci. Eng. 2022, 209, 109964. [Google Scholar] [CrossRef]
Seismic Attribute | Correlation Coefficient | Seismic Attribute | Correlation Coefficient |
---|---|---|---|
2# Coal Seam | 2# Coal Seam | ||
Root Mean Square Amplitude | 0.708 | Decile Frequency (2) | 0.636 |
Maximum Energy Level | 0.74 | Decile Frequency (3) | 0.595 |
Instantaneous Frequency | −0.622 | Decile Frequency (7) | 0.307 |
Maximum Amplitude | 0.743 | Dominant Frequency | 0.399 |
Average Energy Level | 0.681 | High Cross-section | −0.63 |
Bandwidth Deviation Ratio | −0.607 | Low Cross-Section | 0.311 |
Arc Length | 0.768 | Total Energy | 0.657 |
Bandwidth Ratio (4) | −0.465 | Asymmetry | −0.131 |
Bandwidth Ratio (5) | 0.269 | Area above Half Peak | −0.346 |
Bandwidth Ratio (9) | 0.706 | Slope above Half Peak | 0.56 |
R | a | b | c | d | e | f | g | h | i | j | k |
---|---|---|---|---|---|---|---|---|---|---|---|
a | 1 | 0.9955 | −0.8003 | 0.9949 | 0.9974 | −0.8443 | 0.8661 | 0.2221 | 0.1029 | −0.6572 | 0.9329 |
b | 0.9955 | 1 | −0.8023 | 0.9997 | 0.9882 | −0.8418 | 0.8928 | 0.2871 | 0.1766 | −0.6501 | 0.9407 |
c | −0.8003 | −0.8022 | 1 | −0.8056 | 0.7693 | 0.9752 | −0.4967 | −0.3558 | 0.2117 | 0.8204 | −0.5618 |
d | 0.9949 | 0.9998 | −0.8056 | 1 | 0.9876 | −0.8479 | 0.8927 | 0.2923 | 0.1828 | −0.6519 | 0.9401 |
e | 0.9974 | 0.9883 | −0.7694 | 0.9875 | 1 | −0.8228 | 0.8636 | 0.1668 | 0.0495 | −0.6243 | 0.9397 |
f | −0.8443 | −0.8418 | 0.9752 | −0.8479 | −0.8228 | 1 | −0.5611 | 0.2853 | 0.1544 | 0.7664 | −0.6451 |
g | 0.8662 | 0.8928 | −0.4967 | 0.8927 | 0.8636 | 0.5611 | 1 | 0.3978 | 0.3551 | −0.4121 | 0.9652 |
h | 0.2221 | 0.2871 | −0.3559 | 0.2924 | 0.1668 | −0.2853 | 0.3977 | 1 | 0.9811 | −0.5609 | 0.2035 |
i | 0.1209 | 0.1767 | −0.2117 | 0.1829 | 0.0495 | −0.1544 | 0.3551 | 0.9811 | 1 | −0.3954 | 0.1372 |
j | −0.6572 | −0.6502 | 0.8204 | −0.6519 | −0.6244 | 0.7664 | −0.4121 | −0.5609 | −0.3954 | 1 | −0.4362 |
k | 0.9330 | 0.9407 | −0.5618 | 0.9401 | 0.9397 | −0.6451 | 0.9652 | 0.2035 | 0.1373 | −0.4362 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, T.; Wu, Y.; Wang, L.; Nie, Z.; Zhang, L. A Case Study Comparing Methods for Coal Thickness Identification in Complex Geological Conditions. Appl. Sci. 2024, 14, 10381. https://doi.org/10.3390/app142210381
Ding T, Wu Y, Wang L, Nie Z, Zhang L. A Case Study Comparing Methods for Coal Thickness Identification in Complex Geological Conditions. Applied Sciences. 2024; 14(22):10381. https://doi.org/10.3390/app142210381
Chicago/Turabian StyleDing, Tao, Yanhui Wu, Lei Wang, Zhen Nie, and Lei Zhang. 2024. "A Case Study Comparing Methods for Coal Thickness Identification in Complex Geological Conditions" Applied Sciences 14, no. 22: 10381. https://doi.org/10.3390/app142210381
APA StyleDing, T., Wu, Y., Wang, L., Nie, Z., & Zhang, L. (2024). A Case Study Comparing Methods for Coal Thickness Identification in Complex Geological Conditions. Applied Sciences, 14(22), 10381. https://doi.org/10.3390/app142210381