Modeling and Measurement of Tool Wear During Angular Positioning of a Round Cutting Insert of a Toroidal Milling Tool for Multi-Axis Milling
Abstract
:1. Introduction
2. Fundamentals of the APofRCI Method, Taking into Account Torus Milling Cutter Cutting Blade Wear
2.1. Definition of the Torus Milling Cutter Axis Orientation
2.2. Characteristics of the Torus Milling Cutter
2.3. Method to Avoid Undercutting the Machined Surface
2.4. Active Cutting Edge Segment and Active Cutting Belt
2.5. The Torus Milling Cutter Wear and Life Model
3. Machining and Measurement Conditions
3.1. Materials, Tools, and Machining Station
3.2. Tool Wear Modeling and Calibration
3.3. Measuring and Auxiliary Equipment
4. Results and Discussion
4.1. Procedure for Angular Positioning of the RCI of the Torus Milling Cutter
4.2. Tool Wear and Tool Life Models
4.3. Measurements and APofRCI
5. Conclusions
- The adopted function for approximating tool wear over its lifetime is adequate and provides 90% prediction accuracy;
- The tool life model developed is essentially based on the cutting blade working angle parameter. This makes it possible to predict tool life for different machining conditions and for individual instantaneous positions of the cutting edge in relation to the workpiece surface (3D analysis), which is the subject of further work;
- The developed procedure for angular positioning and measurement enables the entire cutting edge of the blade to be fully utilized, so that the total lifespan of the tool as an assembly is significantly extended;
- The proposed solution also allows measurement and analysis of wear mechanisms, which significantly extends the possibilities of angular positioning of the RCI, taking into account its macro- and micro-geometric characteristics.
- The method proposed in this paper was developed for a specific pair of materials, while the method procedure can be successfully applied to any other pair of workpiece–tool material pair.
The research leading to these results was carried out within the framework of international cooperation and Michał Gdula’s research internship abroad. |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escudero, G.G.; Bo, P.; González-Barrio, H.; Calleja-Ochoa, A.; Bartoň, M.; De Lacalle, L.N.L. 5-Axis Double-Flank CNC Machining of Spiral Bevel Gears via Custom-Shaped Tools—Part II: Physical Validations and Experiments. Int. J. Adv. Manuf. Technol. 2022, 119, 1647–1658. [Google Scholar] [CrossRef]
- Bo, P.; González, H.; Calleja, A.; De Lacalle, L.N.L.; Bartoň, M. 5-Axis Double-Flank CNC Machining of Spiral Bevel Gears via Custom-Shaped Milling Tools—Part I: Modeling and Simulation. Precis. Eng. 2020, 62, 204–212. [Google Scholar] [CrossRef]
- González, H.; Calleja, A.; Pereira, O.; Ortega, N.; Norberto López de Lacalle, L.; Barton, M. Super Abrasive Machining of Integral Rotary Components Using Grinding Flank Tools. Metals 2018, 8, 24. [Google Scholar] [CrossRef]
- González, H.; Pereira, O.; Fernández-Valdivielso, A.; López De Lacalle, L.; Calleja, A. Comparison of Flank Super Abrasive Machining vs. Flank Milling on Inconel® 718 Surfaces. Materials 2018, 11, 1638. [Google Scholar] [CrossRef]
- Sliusarenko, O.; Escudero, G.G.; González, H.; Calleja, A.; Bartoň, M.; Ortega, N.; De Lacalle, L.N.L. Constant Probe Orientation for Fast Contact-Based Inspection of 3D Free-Form Surfaces Using (3+2)-Axis Inspection Machines. Precis. Eng. 2023, 84, 37–44. [Google Scholar] [CrossRef]
- Wang, J.; Luo, M.; Xu, K.; Tang, K. Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces. J. Manuf. Sci. Eng. 2019, 141, 031001. [Google Scholar] [CrossRef]
- Zeng, H.; Yan, R.; Du, P.; Zhang, M.; Peng, F. Notch Wear Prediction Model in High Speed Milling of AerMet100 Steel with Bull-Nose Tool Considering the Influence of Stress Concentration. Wear 2018, 408–409, 228–237. [Google Scholar] [CrossRef]
- An, Q.; Cai, C.; Zou, F.; Liang, X.; Chen, M. Tool Wear and Machined Surface Characteristics in Side Milling Ti6Al4V under Dry and Supercritical CO2 with MQL Conditions. Tribol. Int. 2020, 151, 106511. [Google Scholar] [CrossRef]
- Ni, C.; Wang, X.; Zhu, L.; Liu, D.; Wang, Y.; Zheng, Z.; Zhang, P. Machining Performance and Wear Mechanism of PVD TiAlN/AlCrN Coated Carbide Tool in Precision Machining of Selective Laser Melted Ti6Al4V Alloys under Dry and MQL Conditions. J. Manuf. Process. 2022, 79, 975–989. [Google Scholar] [CrossRef]
- Gdula, M.; Mrówka-Nowotnik, G. Analysis of Tool Wear, Chip and Machined Surface Morphology in Multi-Axis Milling Process of Ni-Based Superalloy Using the Torus Milling Cutter. Wear 2023, 520–521, 204652. [Google Scholar] [CrossRef]
- Luo, M.; Luo, H.; Zhang, D.; Tang, K. Improving Tool Life in Multi-Axis Milling of Ni-Based Superalloy with Ball-End Cutter Based on the Active Cutting Edge Shift Strategy. J. Mater. Process. Technol. 2018, 252, 105–115. [Google Scholar] [CrossRef]
- Cao, L.-X.; Gong, H.; Liu, J. The Offset Approach of Machining Free Form Surface. J. Mater. Process. Technol. 2007, 184, 6–11. [Google Scholar] [CrossRef]
- Musfirah, A.H.; Ghani, J.A.; Haron, C.H.C. Tool Wear and Surface Integrity of Inconel 718 in Dry and Cryogenic Coolant at High Cutting Speed. Wear 2017, 376–377, 125–133. [Google Scholar] [CrossRef]
- Zhu, Z.; Peng, F.; Yan, R.; Li, Z.; Wu, J.; Tang, X.; Chen, C. Influence Mechanism of Machining Angles on Force Induced Error and Their Selection in Five Axis Bullnose End Milling. Chin. J. Aeronaut. 2020, 33, 3447–3459. [Google Scholar] [CrossRef]
- Chang, Z.; Qian, J.; Chen, Z.C.; Wan, N.; Zhang, D. Geometrical Theory of Cutting Stock with Torus End Mills in Five-Axis CNC Machining and Its Applications in Machining Simulation. Int. J. Adv. Manuf. Technol. 2019, 105, 27–46. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement Technologies for Precision Positioning. CIRP Ann. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Ivanov, V.; Botko, F.; Dehtiarov, I.; Kočiško, M.; Evtuhov, A.; Pavlenko, I.; Trojanowska, J. Development of Flexible Fixtures with Incomplete Locating: Connecting Rods Machining Case Study. Machines 2022, 10, 493. [Google Scholar] [CrossRef]
- Brillinger, M.; Wuwer, M.; Abdul Hadi, M.; Haas, F. Energy Prediction for CNC Machining with Machine Learning. CIRP J. Manuf. Sci. Technol. 2021, 35, 715–723. [Google Scholar] [CrossRef]
- Ramos-Fernández, J.C.; López-Morales, V.; Márquez-Vera, M.A.; Pérez, J.M.X.; Suarez-Cansino, J. Neuro-Fuzzy Modelling and Stable PD Controller for Angular Position in Steering Systems. Int. J. Automot. Technol. 2021, 22, 1495–1503. [Google Scholar] [CrossRef]
- Kaščak, J.; Gašpár, Š.; Paško, J.; Husár, J.; Knapčíková, L. Polylactic Acid and Its Cellulose Based Composite as a Significant Tool for the Production of Optimized Models Modified for Additive Manufacturing. Sustainability 2021, 13, 1256. [Google Scholar] [CrossRef]
- Abdul Hadi, M.; Brillinger, M.; Wuwer, M.; Schmid, J.; Trabesinger, S.; Jäger, M.; Haas, F. Sustainable Peak Power Smoothing and Energy-Efficient Machining Process Thorough Analysis of High-Frequency Data. J. Clean. Prod. 2021, 318, 128548. [Google Scholar] [CrossRef]
- Abdul Hadi, M.; Kraus, D.; Kajmakovic, A.; Suschnigg, J.; Guiza, O.; Gashi, M.; Sopidis, G.; Vukovic, M.; Milenkovic, K.; Haslgruebler, M.; et al. Towards Flexible and Cognitive Production—Addressing the Production Challenges. Appl. Sci. 2022, 12, 8696. [Google Scholar] [CrossRef]
- Visan, D.A.; Lita, I.; Cioc, I.B. Wireless Control System for Angular Positioning Applications. In Proceedings of the 2013 IEEE 19th International Symposium for Design and Technology in Electronic Packaging (SIITME), Galati, Romania, 24–27 October 2013; pp. 103–106. [Google Scholar]
- Adamczak, M.; Kolinski, A.; Trojanowska, J.; Husár, J. Digitalization Trend and Its Influence on the Development of the Operational Process in Production Companies. Appl. Sci. 2023, 13, 1393. [Google Scholar] [CrossRef]
- Hrehova, S. Description of Using Different Software Tools to Analyze the Selected Process. In Proceedings of the 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Coranic, T.; Mascenik, J. Experimental Measurement of Dynamic Characteristics of Structural Units. Processes 2023, 11, 3333. [Google Scholar] [CrossRef]
- Jurko, J.; Miškiv-Pavlík, M.; Hladký, V.; Lazorík, P.; Michalík, P.; Petruška, I. Measurement of the Machined Surface Diameter by a Laser Triangulation Sensor and Optimalization of Turning Conditions Based on the Diameter Deviation and Tool Wear by GRA and ANOVA. Appl. Sci. 2022, 12, 5266. [Google Scholar] [CrossRef]
- Jurko, J.; Miškiv-Pavlík, M.; Husár, J.; Michalik, P. Turned Surface Monitoring Using a Confocal Sensor and the Tool Wear Process Optimization. Processes 2022, 10, 2599. [Google Scholar] [CrossRef]
- Tran, C.-S.; Hsieh, T.-H.; Jywe, W.-Y. Laser R-Test for Angular Positioning Calibration and Compensation of the Five-Axis Machine Tools. Appl. Sci. 2021, 11, 9507. [Google Scholar] [CrossRef]
- Yi-Tsung, L.; Kuang-Chao, F. A Novel Method of Angular Positioning Error Analysis of Rotary Stages Based on the Abbe Principle. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1885–1892. [Google Scholar] [CrossRef]
- Kanno, Y.; Sato, Y. Linear and Angular Position Sensing for Two- Degrees-of-Freedom Motor. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B.; Lin, H.; Zhang, S.; Shi, Z.; Song, H.; Sun, Y. Calibration Method for Angular Positioning Deviation of a High-Precision Rotary Table Based on the Laser Tracer Multi-Station Measurement System. Appl. Sci. 2019, 9, 3417. [Google Scholar] [CrossRef]
- Gietler, H.; Stetco, C.; Zangl, H. Scalable Retrofit Angular Position Sensor System. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Sridharan, M.; Dhandapani, S. Real Time Embedded System Development for Missile Angular Position Acquisition through Image Processing. CSIT 2020, 8, 257–261. [Google Scholar] [CrossRef]
- Diakov, D.; Komarski, D. Micro-Positioning Module for Angular Orientation Position of the Axis of Rotation Analysis. In Proceedings of the 2021 XXXI International Scientific Symposium Metrology and Metrology Assurance (MMA), Sozopol, Bulgaria, 7–11 September 2021; pp. 1–6. [Google Scholar]
- Marciniak, K. Influence of Surface Shape on Admissible Tool Positions in 5-Axis Face Milling. Comput. Aided Des. 1987, 19, 233–236. [Google Scholar] [CrossRef]
- Lazoglu, I.; Liang, S.Y. Modeling of Ball-End Milling Forces With Cutter Axis Inclination. J. Manuf. Sci. Eng. 2000, 122, 3–11. [Google Scholar] [CrossRef]
- Knapčíková, L.; Dupláková, D.; Radchenko, S.; Hatala, M. Rheological Behavior Modelling of Composite Materials Used in Engineering Industry. TEM J. 2017, 6, 242–245. [Google Scholar] [CrossRef]
- Pavlenko, I.; Piteľ, J.; Ivanov, V.; Berladir, K.; Mižáková, J.; Kolos, V.; Trojanowska, J. Using Regression Analysis for Automated Material Selection in Smart Manufacturing. Mathematics 2022, 10, 1888. [Google Scholar] [CrossRef]
- Altintas, Y. Manufacturing Automation. Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed.; Cambridge University Press: New York, NY, USA, 2012; ISBN 978-0-521-17247-9. [Google Scholar]
- Kita, Y.; Furuike, H.; Kakino, Y.; Nakagawa, H.; Hirogaki, T. Basic Study of Ball End Milling on Hardened Steel. J. Mater. Process. Technol. 2001, 111, 240–243. [Google Scholar] [CrossRef]
Inclination Angle δ [°] | Work Angle of Cutting Blade ψr_rci [°] | Distance Between Toolpaths br [mm] | Axial Depth of Cut ap [mm] | Feed per Tooth fz [mm/z] | Cutting Speed (at p. CPi) vc [m/min] | Criterion Rth = Rthvf [mm] | Criterion VBBlim [mm] |
---|---|---|---|---|---|---|---|
1.10946 | 23.4411 | 1.6 | 0.3 | 0.1549 | 71 | 0.0015 | 0.2 |
Test No. | Cutting Speed (at p. CPi) vc [m/min] | Feed Rate f [mm/rev] | Measured Tool Life Tc [min] |
---|---|---|---|
1 | 40 | 0.4 | 84 |
2 | 140 | 0.4 | 0.97 |
3 | 140 | 0.2 | 3.7 |
Laser Set | Movement Accuracy [mm] | Repeat Positioning Accuracy [mm] | Up to Working Speed [mm/s] |
---|---|---|---|
2 W 1064 nm | 0.00199 | 0.000248 | 84 |
Microscope | Keyence VHX 7000 |
Lens | ZS-20 with 20–200× zoom |
Shooting mode | 4K 3D HDR scanning mode with glare reduction |
Magnification | merging images at 100× zoom |
Room temperature | 22 °C |
Humidity | 55% |
Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | R | |
---|---|---|---|---|---|---|
Regression | 1.3271 | 2.0 | 0.6635 | 1867.4383 | 0.0000 | 0.90 |
Residual | 0.0305 | 86 | 0.0003 | |||
Total | 1.3577 | 88 | ||||
Adjusted grand total | 0.1675 | 87 | ||||
Regression of the adjusted total | 1.3271 | 2.0 | 0.6635 | 344.5687 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gdula, M.; Knapčíková, L.; Husár, J.; Vandžura, R. Modeling and Measurement of Tool Wear During Angular Positioning of a Round Cutting Insert of a Toroidal Milling Tool for Multi-Axis Milling. Appl. Sci. 2024, 14, 10405. https://doi.org/10.3390/app142210405
Gdula M, Knapčíková L, Husár J, Vandžura R. Modeling and Measurement of Tool Wear During Angular Positioning of a Round Cutting Insert of a Toroidal Milling Tool for Multi-Axis Milling. Applied Sciences. 2024; 14(22):10405. https://doi.org/10.3390/app142210405
Chicago/Turabian StyleGdula, Michał, Lucia Knapčíková, Jozef Husár, and Radoslav Vandžura. 2024. "Modeling and Measurement of Tool Wear During Angular Positioning of a Round Cutting Insert of a Toroidal Milling Tool for Multi-Axis Milling" Applied Sciences 14, no. 22: 10405. https://doi.org/10.3390/app142210405
APA StyleGdula, M., Knapčíková, L., Husár, J., & Vandžura, R. (2024). Modeling and Measurement of Tool Wear During Angular Positioning of a Round Cutting Insert of a Toroidal Milling Tool for Multi-Axis Milling. Applied Sciences, 14(22), 10405. https://doi.org/10.3390/app142210405