Neural Network Ensemble to Detect Dicentric Chromosomes in Metaphase Images
Abstract
:1. Introduction
- Chromosome banding: This technique is used for chronic or acute exposures in a delayed manner. It consists of analyzing stable alterations in the chromosomes, providing information about the dose received.
- FISH (fluorescence in situ hybridization): Also used in chronic or acute exposures, FISH can detect specific chromosomal abnormalities, such as translocations. It is useful for evaluating the cumulative dose over time.
- Analysis of dicentric chromosomes: This technique is applied in acute exposures. Dicentrics are abnormal chromosomes that form after exposure to ionizing radiation. Their presence indicates a high radiation dose.
- Analysis of binucleated or micronucleated cells: Another technique for acute exposures. Micronucleus cell counting provides information on the dose received and is used in emergency situations.
2. Methodology
2.1. Image Processing Operators
2.2. Chromosome Detection by Neural Network
2.3. Ensemble of Networks
3. Experimental Results
3.1. Dataset
3.2. Preprocessing
3.2.1. Binarization and Thresholding Techniques
3.2.2. Morphological Filters
3.3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuclear Energy Agency (NEA). Chernobyl-Assessment of Radiological and Health Impacts. In 2002 Update of Chernobyl: Ten Years On; Organization for Economic Co-Operation and Development: Paris, France, 2002. [Google Scholar]
- Nuclear Emergency Response Headquarters. Report of Japanese Government to the IAEA Ministerial. In Proceedings of the Conference on Nuclear Safety-The Accident at TEPCO’s Fukushima Nuclear Power Stations, Tokyo, Japan, 15 September 2011; Technical Report. International Atomic Energy Agency: Tokyo, Japan, 2011. [Google Scholar]
- Coeytaux, K.; Bey, E.; Christensen, D.; Glassman, E.S.; Murdock, B.; Doucet, C. Reported radiation overexposure accidents worldwide, 1980–2013: A systematic review. PLoS ONE 2015, 10, e0118709. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Ortiz, A.; Morales-Aramburo, J. Efectos biológicos de las radiaciones ionizantes. Rev. Colomb. De Cardiol. 2020, 27, 61–71. [Google Scholar] [CrossRef]
- Dianov, G.; Lindahl, T. Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 1994, 4, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R. Oncogenes and tumor suppressor genes. CA Cancer J. Clin. 1994, 44, 160–170. [Google Scholar] [CrossRef]
- Weinberg, R. Finding the Anti-Oncogene. Sci. Am. 1988, 259, 44–53. [Google Scholar] [CrossRef]
- Bender, M.; Gooch, P. Persistent chromosome aberrations in irradiated human subjects. Radiat. Res. 1962, 16, 44–53. [Google Scholar] [CrossRef]
- Bender, M.; Gooch, P. Types and rates of X-ray-induced chromosome aberrations in human blood irradiated in vitro. Proc. Natl. Acad. Sci. USA 1962, 48, 522–532. [Google Scholar] [CrossRef]
- Herate, C.; Sabatier, L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. Mutat. Res. Mutat. Res. 2020, 783, 108287. [Google Scholar] [CrossRef]
- Sevan’kaev, A.; Khvostunov, I.; Mikhailova, G.; Golub, E.; Potetnya, O.; Shepel, N.; Nugis, V.Y.; Nadejina, N. Novel data set for retrospective biodosimetry using both conventional and FISH chromosome analysis after high accidental overexposure. Appl. Radiat. Isot. 2000, 52, 1149–1152. [Google Scholar] [CrossRef]
- Ramalho, A.T.; Curado, M.; Natarajan, A. Lifespan of human lymphocytes estimated during a six year cytogenetic follow-up of individuals accidentally exposed in the 1987 radiological accident in Brazil. Mutat. Res. Mol. Mech. Mutagen. 1995, 331, 47–54. [Google Scholar] [CrossRef]
- Ramalho, A.T.; Costa, M.L.P.; Oliveira, M.S. Conventional radiation-biological dosimetry using frequencies of unstable chromosome aberrations. Mutat. Res. Mol. Mech. Mutagen. 1998, 404, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ma, T.; Li, C.; Wen, Z.; Zheng, J.; Zhou, Z. High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network. Nat. Sci. Rep. 2023, 13, 2124. [Google Scholar] [CrossRef] [PubMed]
- Castro-Volio, I. Indicadores citogenéticos para la identificación de exposición a radiación ionizante en humanos. Acta Médica Costarric. 2013, 55, 110–117. [Google Scholar] [CrossRef]
- Romm, H.; Oestreicher, U.; Kulka, U. Cytogenetic damage analysed by the dicentric assay. Ann. Ist. Super Sanita. 2009, 45, 251–259. [Google Scholar]
- Hoffmann, W.; Schmitz-Feuerhake, I. How radiation-specific is the dicentric assay? J. Expo. Sci. Environ. Epidemiol. 1999, 2, 113–133. [Google Scholar] [CrossRef]
- World Health Organization. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies; Technical Report; International Atomic Energy Agency: Vienna, Austria, 2011. [Google Scholar]
- Shen, X.; Qi, Y.; Ma, T.; Zhou, Z. A dicentric chromosome identification method based on clustering and watershed algorithm. Sci. Rep. 2019, 9, 2285. [Google Scholar] [CrossRef]
- Rogan, P.K.; Li, Y.; Wickramasinghe, A.; Subasinghe, A.; Caminsky, N.; Khan, W.; Samarabandu, J.; Wilkins, R.; Flegal, F.; Knoll, J.H. Automating dicentric chromosome detection from cytogenetic biodosimetry data. Radiat. Prot. Dosim. 2014, 159, 95–104. [Google Scholar] [CrossRef]
- Jeong, S.K.; Oh, S.J.; Kim, S.H.; Jang, S.; Kang, Y.R.; Kim, H.; Kye, Y.U.; Lee, S.H.; Lee, C.G.; Park, M.T.; et al. Dicentric chromosome assay using a deep learning-based automated system. Sci. Rep. 2022, 12, 22097. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.S.; Jang, W.I.; Jang, S.; Hwang, G.T.; Woo, S.K. Deep Neural Network-Based Automatic Dicentric Chromosome Detection Using a Model Pretrained on Common Objects. Diagnostics 2023, 13, 3191. [Google Scholar] [CrossRef]
- Wadhwa, A.S.; Tyagi, N.; Roy Chowdhury, P. Deep Learning based Automatic Detection of Dicentric Chromosome. arXiv 2022, arXiv:2204.08029. [Google Scholar]
- Molina-Cabello, M.A.; Accino, C.; López-Rubio, E.; Thurnhofer-Hemsi, K. Optimization of convolutional neural network ensemble classifiers by genetic algorithms. In Proceedings of the Advances in Computational Intelligence: 15th International Work-Conference on Artificial Neural Networks, IWANN 2019, Gran Canaria, Spain, 12–14 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 163–173. [Google Scholar]
- Molina-Cabello, M.A.; Elizondo, D.A.; Luque-Baena, R.M.; Lopez-Rubio, E. Foreground detection by ensembles of random polygonal tilings. Expert Syst. Appl. 2020, 161, 113518. [Google Scholar] [CrossRef]
- Molina-Cabello, M.A.; Rodríguez-Rodríguez, J.A.; Thurnhofer-Hemsi, K.; López-Rubio, E. Histopathological image analysis for breast cancer diagnosis by ensembles of convolutional neural networks and genetic algorithms. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Virtual, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Léger, J.; Leyssens, L.; Kerckhofs, G.; De Vleeschouwer, C. Ensemble learning and test-time augmentation for the segmentation of mineralized cartilage versus bone in high-resolution microCT images. Comput. Biol. Med. 2022, 148, 105932. [Google Scholar] [CrossRef] [PubMed]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 10 November 2024).
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- RangeKing. Brief Summary of YOLOv8 Model Structure; GitHub: San Francisco, CA, USA, 2023. [Google Scholar]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, J.A.; López-Rubio, E.; Ángel-Ruiz, J.A.; Molina-Cabello, M.A. The Impact of Noise and Brightness on Object Detection Methods. Sensors 2024, 24, 821. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Minimum confidence threshold for detections. The detector disregards those objects detected with a confidence below this threshold. The parameter is noted as in YOLOv8x (default value of 0.25). In this work, . | |
Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Parameter used by YOLOv8x noted as with a default value of 0.7. | |
The aggregation function of the ensemble. In this work, it combines the prediction provided by the different methods of which the ensemble is composed. That combination disregards those objects with an IoU below the threshold and those predictions with at least a certain percentage of coincidence between the ensemble’s members (). | |
IoU threshold for consensus merged prediction. The ensemble disregards those merged objects detected with IoU below this threshold. In this work, . | |
The ensemble disregards those merged objects detected if the percentage of coincidence between the ensemble’s members is below this threshold. In this work, . |
Method | TP | FP | FN | RC | PR | FM | S |
---|---|---|---|---|---|---|---|
No operation | 2256 | 2 | 83 | 0.96 | 1.00 | 0.49 | 0.96 |
nc2 | 2004 | 227 | 335 | 0.86 | 0.90 | 0.44 | 0.78 |
nc3 | 2139 | 854 | 200 | 0.91 | 0.71 | 0.40 | 0.67 |
nc4 | 1976 | 700 | 363 | 0.84 | 0.74 | 0.39 | 0.65 |
nc5 | 2004 | 0 | 335 | 0.86 | 1.00 | 0.46 | 0.86 |
no2 | 2144 | 7 | 195 | 0.92 | 1.00 | 0.48 | 0.91 |
no3 | 2086 | 2 | 253 | 0.89 | 1.00 | 0.47 | 0.89 |
no4 | 2139 | 51 | 200 | 0.91 | 0.98 | 0.47 | 0.89 |
no5 | 1956 | 1987 | 383 | 0.84 | 0.50 | 0.31 | 0.45 |
sc2 | 1836 | 100 | 503 | 0.78 | 0.95 | 0.43 | 0.75 |
sc3 | 1693 | 271 | 646 | 0.72 | 0.86 | 0.39 | 0.65 |
sc4 | 1030 | 8 | 1309 | 0.44 | 0.99 | 0.31 | 0.44 |
sc5 | 799 | 1794 | 1540 | 0.34 | 0.31 | 0.16 | 0.19 |
so2 | 1804 | 210 | 535 | 0.77 | 0.90 | 0.41 | 0.71 |
so3 | 1887 | 51 | 452 | 0.81 | 0.97 | 0.44 | 0.79 |
so4 | 1791 | 186 | 548 | 0.77 | 0.91 | 0.41 | 0.71 |
so5 | 1808 | 1 | 531 | 0.77 | 1.00 | 0.44 | 0.77 |
Consensus 0.05 | 2330 | 6450 | 9 | 1.00 | 0.27 | 0.42 | 0.27 |
Consensus 0.1 | 2314 | 0 | 25 | 0.99 | 1.00 | 0.99 | 0.99 |
Consensus 0.2 | 2278 | 0 | 61 | 0.97 | 1.00 | 0.99 | 0.97 |
Consensus 0.3 | 2211 | 0 | 128 | 0.95 | 1.00 | 0.97 | 0.95 |
Consensus 0.4 | 2159 | 0 | 180 | 0.92 | 1.00 | 0.96 | 0.92 |
Consensus 0.5 | 2012 | 0 | 327 | 0.86 | 1.00 | 0.92 | 0.86 |
Method | TP | TN | FP | FN | RC | PR | FM | S | ACC |
---|---|---|---|---|---|---|---|---|---|
No operation | 26 | 2178 | 6 | 46 | 0.36 | 0.81 | 0.50 | 0.33 | 0.98 |
nc2 | 12 | 1936 | 8 | 48 | 0.20 | 0.60 | 0.30 | 0.18 | 0.97 |
nc3 | 11 | 2068 | 9 | 51 | 0.18 | 0.55 | 0.27 | 0.15 | 0.97 |
nc4 | 9 | 1871 | 39 | 57 | 0.14 | 0.19 | 0.16 | 0.09 | 0.95 |
nc5 | 12 | 1936 | 8 | 48 | 0.20 | 0.60 | 0.30 | 0.18 | 0.97 |
no2 | 14 | 2068 | 9 | 53 | 0.21 | 0.61 | 0.31 | 0.18 | 0.97 |
no3 | 14 | 2026 | 2 | 44 | 0.24 | 0.88 | 0.38 | 0.23 | 0.98 |
no4 | 14 | 2062 | 10 | 53 | 0.21 | 0.58 | 0.31 | 0.18 | 0.97 |
no5 | 10 | 1889 | 8 | 49 | 0.17 | 0.56 | 0.26 | 0.15 | 0.97 |
sc2 | 6 | 1778 | 4 | 48 | 0.11 | 0.60 | 0.19 | 0.10 | 0.97 |
sc3 | 5 | 1634 | 9 | 45 | 0.10 | 0.36 | 0.16 | 0.08 | 0.97 |
sc4 | 10 | 987 | 3 | 30 | 0.25 | 0.77 | 0.38 | 0.23 | 0.97 |
sc5 | 5 | 768 | 4 | 22 | 0.19 | 0.56 | 0.28 | 0.16 | 0.97 |
so2 | 8 | 1727 | 17 | 52 | 0.13 | 0.32 | 0.19 | 0.10 | 0.96 |
so3 | 9 | 1812 | 17 | 49 | 0.16 | 0.35 | 0.21 | 0.12 | 0.97 |
so4 | 9 | 1731 | 1 | 50 | 0.15 | 0.90 | 0.26 | 0.15 | 0.97 |
so5 | 11 | 1742 | 8 | 47 | 0.19 | 0.58 | 0.29 | 0.17 | 0.97 |
Consensus 0.05 | 35 | 2167 | 76 | 52 | 0.40 | 0.32 | 0.35 | 0.21 | 0.95 |
Consensus 0.1 | 25 | 2203 | 25 | 61 | 0.29 | 0.50 | 0.37 | 0.23 | 0.96 |
Consensus 0.2 | 16 | 2187 | 8 | 67 | 0.19 | 0.67 | 0.30 | 0.18 | 0.97 |
Consensus 0.3 | 11 | 2135 | 1 | 64 | 0.15 | 0.92 | 0.25 | 0.14 | 0.97 |
Consensus 0.4 | 6 | 2089 | 1 | 63 | 0.09 | 0.86 | 0.16 | 0.09 | 0.97 |
Consensus 0.5 | 5 | 1952 | 0 | 55 | 0.08 | 1.00 | 0.15 | 0.08 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atencia-Jiménez, I.; Balajee, A.S.; Ruiz-Gómez, M.J.; Sendra-Portero, F.; Montoro, A.; Molina-Cabello, M.A. Neural Network Ensemble to Detect Dicentric Chromosomes in Metaphase Images. Appl. Sci. 2024, 14, 10440. https://doi.org/10.3390/app142210440
Atencia-Jiménez I, Balajee AS, Ruiz-Gómez MJ, Sendra-Portero F, Montoro A, Molina-Cabello MA. Neural Network Ensemble to Detect Dicentric Chromosomes in Metaphase Images. Applied Sciences. 2024; 14(22):10440. https://doi.org/10.3390/app142210440
Chicago/Turabian StyleAtencia-Jiménez, Ignacio, Adayabalam S. Balajee, Miguel J. Ruiz-Gómez, Francisco Sendra-Portero, Alegría Montoro, and Miguel A. Molina-Cabello. 2024. "Neural Network Ensemble to Detect Dicentric Chromosomes in Metaphase Images" Applied Sciences 14, no. 22: 10440. https://doi.org/10.3390/app142210440
APA StyleAtencia-Jiménez, I., Balajee, A. S., Ruiz-Gómez, M. J., Sendra-Portero, F., Montoro, A., & Molina-Cabello, M. A. (2024). Neural Network Ensemble to Detect Dicentric Chromosomes in Metaphase Images. Applied Sciences, 14(22), 10440. https://doi.org/10.3390/app142210440