Creating a Quasi-Resonant Induction Cooktop Integrating Zero-Voltage Switching (ZVS) and Load Management
Abstract
:1. Introduction
2. Quasi-Resonance Circuit
2.1. Principles of Induction Heating
2.2. Operating Principles
2.3. Constraints
3. System Design in Component Level
4. Peripheral Circuits
5. Microcontroller
5.1. Flowchart
5.2. ZVS Detection
6. Prototype Test
6.1. Load-Free Test
6.2. Loaded Test
6.3. Comparison
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucia, O.; Maussion, P.; Dede, E.J.; Burdio, J.M. Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Trans. Ind. Electron. 2013, 61, 2509–2520. [Google Scholar] [CrossRef]
- Serrano, J.; Lope, I.; Acero, J. Nonplanar Overlapped Inductors Applied to Domestic Induction Heating Appliances. IEEE Trans. Ind. Electron. 2019, 66, 6916–6924. [Google Scholar] [CrossRef]
- Pascual, A.; Acero, J.; Llorente, S.; Carretero, C.; Burdio, J.M. Self-Adaptive Overtemperature Protection Materials for Safety-Centric Domestic Induction Heating Applications. IEEE Access 2023, 11, 1193–1201. [Google Scholar] [CrossRef]
- Sarnago, H.; Burdio, J.M.; Lucia, O. High-Performance and Cost-Effective ZCS Matrix Resonant Inverter for Total Active Surface Induction Heating Appliances. IEEE Trans. Power Electron. 2019, 34, 117–125. [Google Scholar] [CrossRef]
- Sarnago, H.; Guillen, P.; Burdio, J.M.; Lucia, O. Multiple-Output ZVS Resonant Inverter Architecture for Flexible Induction Heating Appliances. IEEE Access 2019, 7, 157046–157056. [Google Scholar] [CrossRef]
- Serrano, J.; Acero, J.; Lope, I.; Carretero, C.; Burdio, J.M. A Flexible Cooking Zone Composed of Partially Overlapped Inductors. IEEE Trans. Ind. Electron. 2018, 65, 7762–7771. [Google Scholar] [CrossRef]
- Jang, E.; Kwon, M.J.; Park, S.M.; Ahn, H.M.; Lee, B.K. Analysis and Design of Flexible-Surface Induction-Heating Cooktop with GaN-HEMT-Based Multiple Inverter System. IEEE Trans. Power Electron. 2022, 37, 12865–12876. [Google Scholar] [CrossRef]
- Wang, Y.; Aksoz, A.; Geury, T.; Ozturk, S.B.; Kivanc, O.C.; Hegazy, O. A Review of Modular Multilevel Converters for Stationary Applications. Appl. Sci. 2020, 10, 7719. [Google Scholar] [CrossRef]
- Bono-Nuez, A.; Martin-Del-Brio, B.; Bernal-Ruiz, C.; Perez-Cebolla, F.J.; Martinez-Iturbe, A.; Sanz-Gorrachategui, I. The Inductor as a Smart Sensor for Material Identification in Domestic Induction Cooking. IEEE Sens. J. 2018, 18, 2462–2470. [Google Scholar] [CrossRef]
- Plumed, E.; Lope, I.; Acero, J. Modeling and Design of Cookware for Induction Heating Technology with Balanced Electromagnetic and Thermal Characteristics. IEEE Access 2022, 10, 83793–83801. [Google Scholar] [CrossRef]
- Farajdadian, S.; Hajizadeh, A.; Soltani, M. Recent developments of multiport DC/DC converter topologies, control strategies, and applications: A comparative review and analysis. Energy Rep. 2024, 11, 1019–1052. [Google Scholar] [CrossRef]
- Shakeera, S.; Rachananjali, K. Advancing Power Conversion: A Comprehensive Survey on Reduced Multilevel Inverters, Switching Techniques, and Controllers. In Proceedings of the 2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI), Kannur, India, 21–22 June 2024; pp. 1–6. [Google Scholar]
- Salem, M.; Richelli, A.; Yahya, K.; Hamidi, M.N.; Ang, T.Z.; Alhamrouni, I. A comprehensive review on multilevel inverters for grid-tied system applications. Energies 2022, 15, 6315. [Google Scholar] [CrossRef]
- Chouhan, J.; Gawhade, P.; Ojha, A.; Swarnkar, P. A comprehensive review of hybrid energy systems utilizing multilevel inverters with minimal switch count. Electr. Eng. 2024, 1–25. [Google Scholar] [CrossRef]
- Rashid, M.H.; Hui, S.Y.R.; Chung, H.S.H.; Madichetty, S.; Kumar, N.S.; Krishna, B.M. Resonant and Soft-Switching Converters. In Power Electronics Handbook; Butterworth-Heinemann: Oxford, UK, 2024; pp. 345–405. [Google Scholar]
- Hinov, N.; Gilev, B. Neural Network-Based Design of a Buck Zero-Voltage-Switching Quasi-Resonant DC–DC Converter. Mathematics 2024, 12, 3305. [Google Scholar] [CrossRef]
- Sarnago, H.; Burdio, J.M.; Lucia, O. Dual-Output Extended-Power-Range Quasi-Resonant Inverter for Induction Heating Appliances. IEEE Trans. Power Electron. 2022, 38, 3385–3397. [Google Scholar] [CrossRef]
- Yilmaz, E.N.; Aksoz, A.; Saygin, A. Design of an off-grid model of micro-smart grid connection of an asynchronous motor fed with LUO converter. Electr. Eng. 2018, 100, 2659–2666. [Google Scholar] [CrossRef]
- Dupuy, D.; Pedreira, D.; Verbeke, D.; Leconte, V.; Wendling, P.; Rondot, L.; Mazauric, V. Adaptive Meshing for Eddy Current Calculations. IEEE Trans. Magn. 2015, 51, 7402504. [Google Scholar] [CrossRef]
- Rehm, F.; Breining, P.; Hiller, M. Determination of Electromagnetic Material Properties of Ferromagnetic Stainless Steel Used in Domestic Induction Heating Cookware. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 1009–1014. [Google Scholar] [CrossRef]
- FisherTechnology. Eddy Current Method. Available online: https://www.helmut-fischer.com/applications/solutions/phase-sensitive-eddy-current-method (accessed on 15 July 2024).
- Morandi, A.; Fabbri, M. In-Depth Induction Heating of Large Steel Slabs by Means of a DC Saturating Field Produced by Superconducting Coils. IEEE Trans. Appl. Supercond. 2016, 26, 0604007. [Google Scholar] [CrossRef]
- Sorokin, D. Simulation of High-frequency Induction Heating. In Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany, 16–18 September 2020; pp. 39–42. [Google Scholar] [CrossRef]
- Lin, C.W.; Liu, H.C.; Chang, Y.L.; Lin, Y.C.; Chen, Y.Y.; Lin, C.W.; Huang, M.S.; Hsu, H.Y. Thermal analysis of boiling pot with single coil induction cooker. In Proceedings of the 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA, 31 May–3 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kasasbeh, A.; Kelleci, B.; Ozturk, S.B.; Aksoz, A.; Hegazy, O. SEPIC Converter with an LC Regenerative Snubber for EV Applications. Energies 2020, 13, 5765. [Google Scholar] [CrossRef]
- Kucukosman, H.; Poyrazoglu, G. Quasi-Resonant Circuitry to Improve Heat Transfer and Efficiency in Induction Cooker. In Proceedings of the 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–4 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Aksoz, A.; Song, Y.; Saygin, A.; Blaabjerg, F.; Davari, P. Improving Performance of Three-Phase Slim DC-Link Drives Utilizing Virtual Positive Impedance-Based Active Damping Control. Electronics 2018, 7, 234. [Google Scholar] [CrossRef]
- Ozturk, M.; Aslan, S.; Altintas, N.; Sinirlioglu, S. Comparison of Induction Cooker Power Converters. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, J.; Lim, S.; Nam, K.; Choi, D. An Optimal Selection of Induction-Heater Capacitance Considering Dissipation Loss Caused by ESR. IEEE Trans. Ind. Appl. 2007, 43, 1117–1125. [Google Scholar] [CrossRef]
- Topuz, N.E.; Dawood, K.; Kaya, U.; Odabas, G.; Komurgoz, G. Electromagnetic and Thermal Analysis of a Domestic Induction Cooker Coil. In Proceedings of the 2019 4th International Conference on Power Electronics and their Applications (ICPEA), Elazig, Turkey, 25–27 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Kaizer Power Electronics. Spiral Coil Inductance Estimation. Available online: https://kaizerpowerelectronics.dk/calculators/spiral-coil-calculator/ (accessed on 31 October 2024).
- Tong, Q.; Huang, C. A design for coil disk of induction cooker with integrated magnetic coil skeleton. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 673–676. [Google Scholar] [CrossRef]
- Jones, G.; Rogers, D. Investigation of IGBT switching energy loss and peak overvoltage using digital active gate drives. In Proceedings of the 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, 9–12 July 2017; pp. 1–8. [Google Scholar] [CrossRef]
- TOSHIBA. TLP250. Available online: https://toshiba.semicon-storage.com/info/docget.jsp?did=16821 (accessed on 31 October 2024).
- Manuel, A.; Gopinath, D. A simulation study of SiC MOSFET characteristics and design of gate drive card using TLP250. In Proceedings of the 2016 International Conference on Next Generation Intelligent Systems (ICNGIS), Kottayam, India, 1–3 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Latina, M.A.E.; Sejera, M.P.; Mitra, J.P.V.; Monton, B.S.; Pundan, C.S. A Study of the Effect of Integrating Low-Pass Filter in Measuring the Dynamic Performance of a High Speed 8-bit Analog-to-Digital Converter (ADC). In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- STMicroelectronic. STM32F103x8. Available online: https://www.st.com/resource/en/datasheet/stm32f103cb.pdf (accessed on 31 October 2024).
- Ozturk, M.; Oktay, U.; Yilmaz, N.; Yardibi, H.S.; Sinirlioglu, S. Comparison of Pan Detection Methods for Single Switch Topology Used in Domestic Induction Cooking. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- See, K.Y.; Bullo, M.; Dughiero, F.; Sieni, E. Practical papers, articles and application notes. IEEE Electromagn. Compat. Mag. 2013, 2, 49–58. [Google Scholar] [CrossRef]
- Lim, G.-S.; Kim, W.-M.; Cho, Y.-K.; Lee, S.-W. Quasi-Resonant Fly-Buck Converter with Active Switching for Improved Output Voltage Boosting and Regulation. IEEE Trans. Ind. Electron. 2024, 71, 12153–12164. [Google Scholar] [CrossRef]
- Altintas, N.; Ozturk, M.; Oktay, U. Performance evaluation of pan position methods in domestic induction cooktops. Electr. Eng. 2023, 105, 2559–2571. [Google Scholar] [CrossRef]
- Ozturk, M.; Altintas, N. Multi-output AC–AC converter for domestic induction heating. Electr. Eng. 2023, 105, 297–316. [Google Scholar] [CrossRef]
- Salvi, B.; Porpandiselvi, S.; Vishwanathan, N. An Inverter Circuit Configuration Suitable for Vessels of Different Material for Multiload Induction Cooking Application. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3223–3235. [Google Scholar] [CrossRef]
- Hsieh, H.; Kuo, C.; Chang, W. Study of half-bridge series-resonant induction cooker powered by line rectified DC with less filtering. IET Power Electron. 2023, 16, 1929–1942. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Q.; Ke, G.; Xu, L.; Ren, X.; Zhang, Z. A Flat-Top Single-Ended Resonant Converter with Low Switch Voltage Stress. IEEE Trans. Power Electron. 2023, 38, 11673–11684. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M. Establishment and Verification of Core Loss Model of Nanocrystalline under Square Wave Excitation. In Proceedings of the ISMSEE 2022—The 2nd International Symposium on Mechanical Systems and Electronic Engineering, Zhuhai, China, 25–27 February 2022; pp. 1–6. [Google Scholar]
- Sanusi, B.N.; Ouyang, Z. Integrated inductor design for a highly compact embedded battery charger. IEEE Trans. Power Electron. 2022, 37, 8873–8885. [Google Scholar] [CrossRef]
- Roberto, S.F.; Sciré, D.; Lullo, G.; Vitale, G. Equivalent circuit modelling of ferrite inductors losses. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–4. [Google Scholar]
Figure | Load | |||
---|---|---|---|---|
12 | 10 | 1000 | 90 | Without |
14 | 10 | 100 | 80 | Present |
13 | 20 | 24 | 125 | Without |
15 | 20 | 24 | 120 | Present |
Category | Equipment/Components |
---|---|
Quasi-resonant inverter | Power MOSFETs and/or IGBTs |
Inductor and capacitor components for the resonant circuit | |
Diodes for rectification | |
Microcontroller unit (MCU) | STM32 microcontroller |
Development board for STM32 | |
Control system components | Shunt resistors for current sensing |
NTC thermistors for temperature monitoring | |
Voltage measurement circuits (operational amplifiers for scaling) | |
Power supply | Adjustable DC power supply for inverter testing |
Load testing equipment | Resistive load bank or induction heating load |
Oscilloscope for monitoring voltage and current waveforms | |
Measurement instruments | Digital multimeter for voltage and current measurements |
Temperature measurement system (digital thermometer and data logger) | |
Calibration equipment | Calibration sources for voltage and current |
Calibration standards for temperature sensors | |
Prototyping tools | Breadboard and PCBs for circuit assembly |
Soldering equipment and tools for circuit assembly and modifications | |
Safety equipment | Insulation resistance tester |
Thermal imaging camera or infrared thermometer for safety checks | |
Fume hood or ventilation for testing potentially hazardous components |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksöz, A. Creating a Quasi-Resonant Induction Cooktop Integrating Zero-Voltage Switching (ZVS) and Load Management. Appl. Sci. 2024, 14, 10449. https://doi.org/10.3390/app142210449
Aksöz A. Creating a Quasi-Resonant Induction Cooktop Integrating Zero-Voltage Switching (ZVS) and Load Management. Applied Sciences. 2024; 14(22):10449. https://doi.org/10.3390/app142210449
Chicago/Turabian StyleAksöz, Ahmet. 2024. "Creating a Quasi-Resonant Induction Cooktop Integrating Zero-Voltage Switching (ZVS) and Load Management" Applied Sciences 14, no. 22: 10449. https://doi.org/10.3390/app142210449
APA StyleAksöz, A. (2024). Creating a Quasi-Resonant Induction Cooktop Integrating Zero-Voltage Switching (ZVS) and Load Management. Applied Sciences, 14(22), 10449. https://doi.org/10.3390/app142210449