A Deep Learning-Based Framework for Bearing RUL Prediction to Optimize Laser Shock Peening Remanufacturing
Abstract
:1. Introduction
- Hybrid transformer-attention model for enhanced RUL prediction: The integration of transformer and attention mechanisms is proposed to predict bearing RUL. The transformer extracts relevant historical data points with similar vibration characteristics by comparing the features with standard samples. The attention mechanism focuses on samples based on the significance of the degradation trend so that a more accurate prediction of the bearing remaining life can be achieved;
- LSP parameter optimization based on RUL: A deep neural network (DNN) was used to predict the extended RUL of the bearing after LSP remanufacturing process, and the predictions were utilized by an optimization algorithm to determine the ideal LSP parameters, including laser power density, overlapping rate, and spot diameter. The fruit fly optimization (FFO) algorithm was utilized to optimize the remanufacturing performance;
- Experimental validation and case studies: Comprehensive experimental validation and case studies were conducted to validate the effectiveness of the proposed models and optimization strategies. Real-world bearing data and various LSP scenarios were tested to verify the accuracy of the RUL predictions and the efficacy of the optimized LSP parameters.
2. Related Works
2.1. Bearing Remaining Useful Life Prediction
2.2. Laser Shock Peening and Remanufacturing
3. Overview of the Research Framework
4. Methodology
4.1. Data Collection and Preprocessing
4.2. Development of the Transformer-Attention RUL Prediction Model
4.3. Model Training and Validation
4.4. Laser Shock Peening Parameter Optimization
4.5. Validation and Case Studies
5. Results
5.1. Data Collection and Preprocessing
5.2. Development of the Transformer-Attention RUL Prediction Model
5.3. Model Training and Validation
5.4. Laser Shock Peening Parameter Optimization
5.5. Validation and Case Studies
6. Discussion
6.1. Data Collection and Preprocessing
6.2. Development of the Transformer-Attention RUL Prediction Model
6.3. Model Training and Validation
6.4. Laser Shock Peening Parameter Optimization
6.5. Validation and Case Studies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Y.; Liu, D.; Cui, L.; Wang, H. Heterogeneous Graph Representation-Driven Multiplex Aggregation Graph Neural Network for Remaining Useful Life Prediction of Bearings. Mech. Syst. Signal Process. 2024, 220, 111679. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, K.; Zheng, Q.; Li, X.; Li, Z.; Ding, G.; Zhao, M. A Hybrid Attention-Based Multi-Wavelet Coefficient Fusion Method in RUL Prognosis of Rolling Bearings. Reliab. Eng. Syst. Saf. 2023, 237, 109337. [Google Scholar] [CrossRef]
- Wu, J.; He, D.; Li, J.; Miao, J.; Li, X.; Li, H.; Shan, S. Temporal Multi-Resolution Hypergraph Attention Network for Remaining Useful Life Prediction of Rolling Bearings. Reliab. Eng. Syst. Saf. 2024, 247, 110143. [Google Scholar] [CrossRef]
- Pei, X.; Li, X.; Gao, L. A Novel Machinery RUL Prediction Method Based on Exponential Model and Cross-Domain Health Indicator Considering First-to-End Prediction Time. Mech. Syst. Signal Process. 2024, 209, 111122. [Google Scholar] [CrossRef]
- Magadán, L.; Granda, J.C.; Suárez, F.J. Robust Prediction of Remaining Useful Lifetime of Bearings Using Deep Learning. Eng. Appl. Artif. Intell. 2024, 130, 107690. [Google Scholar] [CrossRef]
- Sun, R.; Chen, Z.; Li, Q.; Zhang, X.; Li, R. Atomistic Insight into Laser Shock Peening Response of α-Titanium: An Experimentally Verified Simulation Study. Acta Mater. 2024, 281, 120359. [Google Scholar] [CrossRef]
- Jiang, L.; Lan, L.; Wang, H.; Yan, X.; Gao, S.; He, B.; Chen, C. Laser Shock Peening of Laser Melting Deposited TiAl Alloy for Enhancing Its Corrosion Resistance. Surf. Coat. Technol. 2024, 483, 130745. [Google Scholar] [CrossRef]
- Guan, Z.; Chen, S.; Li, Z.; Zou, S.; Hua, Y.; Cai, J. Tailoring Surface Properties and Corrosion Resistance of Laser Shock Peened Ti6Al4V Alloy by Low-Temperature Annealing. J. Manuf. Process. 2024, 129, 24–34. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Wang, C.; Luo, K.; Lu, J. Significant Improvement in Hot Corrosion Resistance of Inconel 690 by Laser Shock Peening. Surf. Coat. Technol. 2024, 492, 131202. [Google Scholar] [CrossRef]
- Dai, W.; Guo, W.; Li, Q.; Xiao, J.; Li, W.; Zhang, H. Homogenization of Local Microstructure and Mechanical Properties in Friction Stir Welded Al-Cu Alloy Joint Achieved through Laser Shock Peening. J. Mater. Process. Technol. 2024, 333, 118579. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Basiri, A. RACEkNN: A Hybrid Approach for Improving the Effectiveness of the K-Nearest Neighbor Algorithm. Knowl.-Based Syst. 2024, 301, 112357. [Google Scholar] [CrossRef]
- Zhang, M.; He, C.; Huang, C.; Yang, J. A Weighted Time Embedding Transformer Network for Remaining Useful Life Prediction of Rolling Bearing. Reliab. Eng. Syst. Saf. 2024, 251, 110399. [Google Scholar] [CrossRef]
- Lu, X.; Yao, X.; Jiang, Q.; Shen, Y.; Xu, F.; Zhu, Q. Remaining Useful Life Prediction Model of Cross-Domain Rolling Bearing via Dynamic Hybrid Domain Adaptation and Attention Contrastive Learning. Comput. Ind. 2025, 164, 104172. [Google Scholar] [CrossRef]
- Song, W.; Wang, Z.; Kudreyko, A. Predictive Framework for Remaining Useful Life of Roller Bearings: Utilizing Fractional Generalized Pareto Degradation Model in Performance Evaluation. Measurement 2025, 241, 115772. [Google Scholar] [CrossRef]
- Cui, L.; Xiao, Y.; Liu, D.; Han, H. Digital Twin-Driven Graph Domain Adaptation Neural Network for Remaining Useful Life Prediction of Rolling Bearing. Reliab. Eng. Syst. Saf. 2024, 245, 109991. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Noman, K.; Nandi, A.K. Multi-Task Learning Mixture Density Network for Interval Estimation of the Remaining Useful Life of Rolling Element Bearings. Reliab. Eng. Syst. Saf. 2024, 251, 110348. [Google Scholar] [CrossRef]
- Lu, W.; Wang, Y.; Zhang, M.; Gu, J. Physics Guided Neural Network: Remaining Useful Life Prediction of Rolling Bearings Using Long Short-Term Memory Network through Dynamic Weighting of Degradation Process. Eng. Appl. Artif. Intell. 2024, 127 Pt B, 107350. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z. Remaining Useful Life Prediction of Rolling Bearing via Composite Multiscale Permutation Entropy and Elman Neural Network. Eng. Appl. Artif. Intell. 2024, 135, 108852. [Google Scholar] [CrossRef]
- Pan, T.; Chen, J.; Liu, Z. A Meta-Weighted Network Equipped with Uncertainty Estimations for Remaining Useful Life Prediction of Turbopump Bearings. Expert Syst. Appl. 2024, 252 Pt B, 124161. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D. Remaining Useful Life Prediction of Bearings with Attention-Awared Graph Convolutional Network. Adv. Eng. Inform. 2023, 58, 102143. [Google Scholar] [CrossRef]
- Kumar, A.; Parkash, C.; Tang, H.; Xiang, J. Intelligent Framework for Degradation Monitoring, Defect Identification and Estimation of Remaining Useful Life (RUL) of Bearing. Adv. Eng. Inform. 2023, 58, 102206. [Google Scholar] [CrossRef]
- He, D.; Li, L.; Guo, W.; He, G.; Peng, P.; Shao, T.; Huan, H.; Zhang, G.; Han, G.; Yan, J. Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening. Corros. Sci. 2021, 184, 109364. [Google Scholar] [CrossRef]
- Wen, F.; Long, Z.; Xing, Z.; Liu, X.; Huang, X.; Zhou, L. The effect of laser shock peening on very high cycle fatigue properties of laser welded 2A60 aluminum alloy joints. Eng. Fract. Mech. 2023, 290, 109537. [Google Scholar] [CrossRef]
- Deng, W.; Wang, C.; Lu, H.; Meng, X.; Wang, Z.; Lv, J.; Luo, K.; Lu, J. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: A comprehensive review. Int. J. Mach. Tools Manuf. 2023, 191, 104061. [Google Scholar] [CrossRef]
- Ge, M.Z.; Tang, Y.; Zhang, Y.K.; Wang, Y. Enhancement in fatigue property of Ti-6Al-4V alloy remanufactured by combined laser cladding and laser shock peening processes. Surf. Coat. Technol. 2022, 444, 128671. [Google Scholar] [CrossRef]
- Huang, X.; Chen, K.; Zhou, L.; Lakshmi Narayan, R.; Ramamurty, U. Effect of laser energy on the fretting wear resistance of femtosecond laser shock peened Ti6Al4V. Surf. Coat. Technol. 2024, 494, 131353. [Google Scholar] [CrossRef]
- Chi, J.; Cai, Z.; Zhang, H.; Zhang, W.; Wan, Z.; Han, G.; Peng, P.; Zeng, Z. Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes. Mater. Des. 2021, 203, 109626. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, J.; Jeong, S. Effects of laser shock peening on silicon nitride ceramic with varying sintering additive ratios. Ceram. Int. 2024; in press. [Google Scholar] [CrossRef]
- Sheng, Y.; Feng, A.; Cao, X.; Lin, G.; Ngankam Ronaldo, C. Effects of laser non-uniform shock peening on the microstructure and fatigue performance of SUS 304 stainless steel welded joints. Mater. Sci. Eng. A 2024, 914, 147186. [Google Scholar] [CrossRef]
- Lu, H.; Wu, L.; Wei, H.; Cai, J.; Luo, K.; Xu, X.; Lu, J. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening. Addit. Manuf. 2022, 55, 102877. [Google Scholar] [CrossRef]
- Ben, Y.; Gao, Q.; Wei, T.; Gong, S.; Li, Q. Real-Time Heave Motion Measurement by Adaptive Band-Pass Filter Based on Strapdown INS. Ocean Eng. 2022, 262, 112278. [Google Scholar] [CrossRef]
- Zhao, Z.-H.; Zhou, Y.; Zhang, S.; Chen, S.; Wen, C.-B.; Xu, Q.; Li, W.-H. PulseNet: Multi-Task Learning-Based Non-Contact Pulse Condition Diagnosis Using Multi-Scale Fusion and Transformer. Knowl.-Based Syst. 2024, 302, 112333. [Google Scholar] [CrossRef]
- Hou, Y.; Li, T.; Wang, J.; Ma, J.; Chen, Z. A Lightweight Transformer Based on Feature Fusion and Global–Local Parallel Stacked Self-Activation Unit for Bearing Fault Diagnosis. Measurement 2024, 236, 115068. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Q.; You, W.; Chen, Y. A Multi-Task Deep Learning Model Based on Comprehensive Feature Integration and Self-Attention Mechanism for Predicting Response to Anti-PD1/PD-L1. Int. Immunopharmacol. 2024, 142, 113099. [Google Scholar] [CrossRef]
- Singh, A.; Sinha, R.K. SS-DNN: A Hybrid Strang Splitting Deep Neural Network Approach for Solving the Allen–Cahn Equation. Eng. Anal. Bound. Elem. 2024, 169, 105944. [Google Scholar] [CrossRef]
- Ren, X.; Huang, Z.; He, Y. Financial Warning for Coal Mining Investments: Evidence from the Fruit Fly Optimisation Algorithm with Backpropagation Neural Networks. Energy Econ. 2024, 134, 107594. [Google Scholar] [CrossRef]
- Sutradhar, S.; Karforma, S.; Bose, R.; Roy, S. A Dynamic Step-Wise Tiny Encryption Algorithm with Fruit Fly Optimization for Quality of Service Improvement in Healthcare. Healthc. Anal. 2023, 3, 100177. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Hossain, M.J.; Duck, B.C. A Hybrid Wind Driven-Based Fruit Fly Optimization Algorithm for Identifying the Parameters of a Double-Diode Photovoltaic Cell Model Considering Degradation Effects. Sustain. Energy Technol. Assess. 2022, 50, 101685. [Google Scholar] [CrossRef]
- Kharga, R.; Nikoukar, A.; Hwang, I.-S.; Goudarzi, H.; Jafaripanah, S. Energy Savings in 25G-NGEPON for Spatial Computing Multimedia Services Based on Vanilla-RNN. Opt. Fiber Technol. 2024, 87, 103914. [Google Scholar] [CrossRef]
- Flouris, K.; Konukoglu, E. Canonical Normalizing Flows for Manifold Learning. Adv. Neural Inf. Process. Syst. 2023, 36, 27294–27314. [Google Scholar]
- Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; Zhu, J. DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. Adv. Neural Inf. Process. Syst. 2022, 35, 5775–5787. [Google Scholar] [CrossRef]
Model | RMSE | Loss Function |
---|---|---|
Transformer-Attention | 0.989 | 0.173 |
CNN-LSTM | 1.356 | 0.276 |
Transformer | 2.111 | 0.268 |
TCN | 1.477 | 0.481 |
2 layer MLP | 1.283 | 0.399 |
Index | Parameters Settings | RMSE | Validation Accuracy | Training Accuracy |
---|---|---|---|---|
1 | heads = 2, lr = 0.001 | 1.213 | 0.912 | 0.944 |
2 | heads = 4, lr = 0.001 | 1.152 | 0.921 | 0.954 |
3 | heads = 8, lr = 0.001 | 1.134 | 0.925 | 0.957 |
4 | heads = 16, lr = 0.001 | 1.112 | 0.935 | 0.962 |
5 | heads = 4, lr = 0.01 | 1.135 | 0.928 | 0.955 |
6 | heads = 4, lr = 0.05 | 1.124 | 0.929 | 0.958 |
7 | heads = 8, lr = 0.0008 | 1.109 | 0.937 | 0.963 |
8 | heads = 8, lr = 0.005 | 1.204 | 0.916 | 0.947 |
9 | heads = 8, lr = 0.01 | 1.098 | 0.946 | 0.968 |
10 | heads = 16, lr = 0.005 | 1.073 | 0.956 | 0.974 |
11 | heads = 8, lr = 0.002 | 0.989 | 0.963 | 0.982 |
12 | heads = 4, lr = 0.0008 | 1.105 | 0.932 | 0.961 |
13 | heads = 4, lr = 0.005 | 1.198 | 0.919 | 0.948 |
14 | heads = 2, lr = 0.002 | 1.125 | 0.925 | 0.955 |
Algorithm | Fitness (0–1) | Convergence Iterations | Improvement in Fitness (%) |
---|---|---|---|
Without Optimization | 0.75 | - | - |
FFO Algorithm | 0.97 | 23 | 29.33 |
ACO Optimization | 0.92 | 25 | 22.67 |
MOPSO Optimization | 0.95 | 26 | 26.67 |
QPSO Optimization | 0.90 | 31 | 20.00 |
SA Optimization | 0.91 | 18 | 21.33 |
WOA Optimization | 0.96 | 21 | 28.00 |
GWO Optimization | 0.94 | 32 | 25.33 |
NSGA-II Optimization | 0.89 | 27 | 18.67 |
GA Optimization | 0.93 | 30 | 24.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Wang, Y.; Li, A.; Gu, C.; Tang, J.; Pang, X. A Deep Learning-Based Framework for Bearing RUL Prediction to Optimize Laser Shock Peening Remanufacturing. Appl. Sci. 2024, 14, 10493. https://doi.org/10.3390/app142210493
Liang Y, Wang Y, Li A, Gu C, Tang J, Pang X. A Deep Learning-Based Framework for Bearing RUL Prediction to Optimize Laser Shock Peening Remanufacturing. Applied Sciences. 2024; 14(22):10493. https://doi.org/10.3390/app142210493
Chicago/Turabian StyleLiang, Yuchen, Yuqi Wang, Anping Li, Chengyi Gu, Jie Tang, and Xianjuan Pang. 2024. "A Deep Learning-Based Framework for Bearing RUL Prediction to Optimize Laser Shock Peening Remanufacturing" Applied Sciences 14, no. 22: 10493. https://doi.org/10.3390/app142210493
APA StyleLiang, Y., Wang, Y., Li, A., Gu, C., Tang, J., & Pang, X. (2024). A Deep Learning-Based Framework for Bearing RUL Prediction to Optimize Laser Shock Peening Remanufacturing. Applied Sciences, 14(22), 10493. https://doi.org/10.3390/app142210493