Prediction of Breakdown Pressure Using a Multi-Layer Neural Network Based on Supercritical CO2 Fracturing Data
Abstract
:1. Introduction
2. Fracturing Tests
2.1. Rock Specimens and Apparatus
2.2. Fracturing Schemes and Procedure
2.3. Experimental Results
3. Theoretical Models for Calculating Breakdown Pressure
3.1. Theoretical Model Based on Elasticity Mechanics
3.2. Comparison of Theoretical and Experimental Results
4. Breakdown Pressure Prediction with a Multi-Layer Neural Network
4.1. Dataset Preparation and Model Verification
- Normalization of input parameters—Since the influencing factors have varying dimensions and value ranges, normalization was necessary to prevent large fluctuations in model loss during backpropagation. The data were standardized based on the mean () and standard deviation () of the raw data () [51], as shown in the equation , where represents the normalized data. This standardization process improves the model’s convergence speed and accuracy. Notably, the fracturing fluid type was assigned numeric codes in descending order of viscosity;
- Splitting the dataset into training and testing sets—The training set was employed for model construction, parameter optimization, and variable updates, while the testing set was reserved for evaluating the model’s performance and generalization ability, allowing for the detection of overfitting or underfitting. Data from the testing set were solely used for evaluation and did not affect model parameters. For this study, the dataset was split in a 7:3 ratio, with 250 samples allocated for training and 112 samples for testing. To fully utilize the entire dataset of 362 samples and validate the model with experimental results, the data obtained from 11 experimental groups were fixed as part of the testing set. An additional 101 samples were randomly selected from the remaining data to complete the testing set, resulting in a total of 112 testing samples, while the remaining 250 samples constituted the training set. Cross-validation was performed by using different random seeds to generate varying train–test splits. This process ensured the consistent generalization ability of the model, and aimed to achieve high accuracy and repeatability for subsequent test set analyses.
4.2. Relative Importance of Influencing Variables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Middleton, R.S.; Carey, J.W.; Currier, R.P.; Hyman, J.D.; Kang, Q.; Karra, S.; Jiménez-Martínez, J.; Porter, M.L.; Viswanathan, H.S. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl. Energy 2015, 147, 500–509. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Shen, Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide. Energy Sources Part A Recover. Util. Environ. Eff. 2012, 34, 1426–1435. [Google Scholar] [CrossRef]
- Sun, B.; Wang, J.; Sun, W.; Wang, Z.; Sun, J. Advances in fundamental research of supercritical CO2 fracturing technology for unconventional natural gas reservoirs. J. China Univ. Pet. 2019, 43, 82–91. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D. How effective is carbon dioxide as an alternative fracturing fluid? SPE J. 2018, 24, 857–876. [Google Scholar] [CrossRef]
- Zhou, D. The Influence of Supercritical CO2 Phase Change on Growth of Multiscale Fractures. Ph.D. Thesis, China University of Petroleum, Beijing, China, 2020. [Google Scholar]
- Hubbert, M.K.; Willis, D.G. Mechanics of hydraulic fracturing. Trans. AIME 1957, 210, 153–168. [Google Scholar] [CrossRef]
- Haimson, B.; Fairhurst, C. Initiation and extension of hydraulic fractures in rocks. Soc. Pet. Eng. J. 1967, 7, 310–318. [Google Scholar] [CrossRef]
- Ito, T. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: Rock. Eng. Fract. Mech. 2008, 75, 1753–1762. [Google Scholar] [CrossRef]
- Li, X.; Feng, Z.; Han, G.; Elsworth, D.; Marone, C.; Saffer, D.; Cheon, D.-S. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 63–76. [Google Scholar] [CrossRef]
- Chen, L.; Tian, S.; Li, G.; Fan, X. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis. Rock Soil Mech. 2015, 36, 125–131. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Z. Application status and prospect of artificial intelligence in reservoir stimulation. Pet. Drill. Tech. 2023, 51, 69–77. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Z. Calibration of an elastoplastic model of sand liquefaction using the swarm intelligence with a multi-objective function. J. Rock Mech. Geotech. Eng. 2023, 15, 789–802. [Google Scholar] [CrossRef]
- Guo, D.; Tang, Y.; Li, S.; Zhang, T.; Kang, Y. Optimization of tight gas fracturing operation parameters based on BP-PSO. Sci. Technol. Eng. 2022, 22, 8304–8312. Available online: https://apps.wanfangdata.com.cn/perios/article:kxjsygc202219019 (accessed on 10 November 2024).
- Yan, H.; Zhang, J.; Zhou, N.; Shi, P. SC-CO2 fracturing effect prediction of coal and rock mass based on DA-DE-SVM intelligent model. Chin. J. Geotech. Eng. 2022, 45, 362–368. [Google Scholar] [CrossRef]
- Hui, G.; Chen, S.; Wang, H.; Gu, F. Application of improved residual neural network-based machine learning method in the prediction of shale gas sweet spot. J. Southwest Pet. Univ. 2021, 43, 19–32. Available online: https://www.sciengine.com/JSUST/doi/10.11885/j.issn.1674-5086.2021.02.27.01 (accessed on 10 November 2024).
- Jiang, T.; Zhou, J.; Liao, L. Development status and future trends of intelligent fracturing technologies. Pet. Drill. Tech. 2022, 50, 1–9. [Google Scholar] [CrossRef]
- Gao, A. Research on the Prediction Model of the Fracturing Effect Based on Extra High Water cut Stage in South Eight area. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2013. [Google Scholar]
- Yan, H. Staged Cracking Mechanism and Crack Propagation Law of Supercritical CO2 Fracturing Coal Mass. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2020. [Google Scholar]
- Yan, H.; Zhang, J.; Zhou, N.; Li, B.; Wang, Y. Crack initiation pressure prediction for SC-CO2 fracturing by integrated meta-heuristics and machine learning algorithms. Eng. Fract. Mech. 2021, 249, 107750. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, X.; Liu, S.; Wei, C.; Wang, J.; Liu, H. An experimental apparatus for supercritical CO2 fracturing of shale: System design and application tests. J. Nat. Gas Sci. Eng. 2022, 103, 104656. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, W.; Xu, Z.; Liu, S.; Wei, C. A review of experimental apparatus for supercritical CO2 fracturing of shale. J. Pet. Sci. Eng. 2022, 208, 109515. [Google Scholar] [CrossRef]
- Hu, Y. Mechanism and Experimental Research of Supercritical Carbon Dioxide Fracturing Shale. Ph.D. Thesis, Wuhan University, Wuhan, China, 2017. [Google Scholar]
- Detournay, E.; Carbonell, R. Fracture-mechanics analysis of the breakdown process in minifracture or leakoff test. SPE Prod. Facil. 1997, 12, 195–199. [Google Scholar] [CrossRef]
- Chen, Z.; Elsworth, D.; Wang, M. Does low-viscosity fracturing fluid always create complex fractures? J. Geophys. Res. Solid Earth 2020, 125, e2020JB020332. [Google Scholar] [CrossRef]
- Lu, Y.; Liao, Y.; Tang, J.; Zhang, X.; Han, S.; Ling, Y. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing. J. China Coal Soc. 2018, 43, 175–180. [Google Scholar] [CrossRef]
- Wu, F.; Meng, P.; Ding, Q.; Li, D.; Yang, W. Calculating models of the breakdown pressure for hydraulic fracturing. Pet. Geol. Oilfield Dev. Daqing 2020, 39, 59–68. [Google Scholar] [CrossRef]
- Sampath, K.H.S.M.; Perera, M.S.A.; Ranjith, P.G. Theoretical overview of hydraulic fracturing break-down pressure. J. Nat. Gas Sci. Eng. 2018, 58, 251–265. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, S.; Liu, Q.; Ma, L.; Yong, Y.; Yang, R. Experimental investigation on the breakdown pressure and fracture propagation of radial borehole fracturing. J. Pet. Sci. Eng. 2022, 208, 109169. [Google Scholar] [CrossRef]
- Zhuang, L.; Kim, K.Y.; Shin, H.S.; Jung, S.G.; Diaz, M. Experimental investigation of effects of borehole size and pressurization rate on hydraulic fracturing breakdown pressure of granite. In Proceedings of the 10th Asian Rock Mechanics Symposium, Singapore, 29 October–3 November 2018. [Google Scholar]
- Haimson, B.C.; Zhao, Z. Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure. In Proceedings of the 32nd U.S. Symposium on Rock Mechanics (USRMS), Norman, OK, USA, 10–12 July 1991; pp. 191–199. [Google Scholar]
- Garagash, D.; Detournay, E. An analysis of the influence of the pressurization rate on the borehole breakdown pressure. Int. J. Solids Struct. 1997, 34, 3099–3118. [Google Scholar] [CrossRef]
- Garagash, D.; Detournay, E. Influence of pressurization rate on borehole breakdown pressure in impermeable rocks. In Proceedings of the 2nd North American Rock Mechanics Symposium, Montreal, QC, Canada, 19–21 June 1996. [Google Scholar]
- Jia, Y.; Song, C.; Wang, J.; Gan, Q. The breakdown process of low-permeable shale and high-permeable sandstone rocks due to non-aqueous fracturing: The role of fluid infiltration. J. Nat. Gas Sci. Eng. 2021, 89, 103873. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Zhang, C.P.; Zhang, Z.Y. Experimental study of fracturing behaviour in ultralow permeability formations: A comparison between CO2 and water fracturing. Eng. Fract. Mech. 2019, 217, 106541. [Google Scholar] [CrossRef]
- Wang, L.; Yao, B.; Xie, H.; Winterfeld, P.H.; Kneafsey, T.J.; Yin, X.; Wu, Y.-S. CO2 injection-induced fracturing in naturally fractured shale rocks. Energy 2017, 139, 1094–1110. [Google Scholar] [CrossRef]
- Wanniarachchi, W.; Gamage, R.; Perera, M.; Rathnaweera, T.; Gao, M.; Padmanabhan, E. Investigation of depth and injection pressure effects on breakdown pressure and fracture permeability of shale reservoirs: An experimental study. Appl. Sci. 2017, 7, 664. [Google Scholar] [CrossRef]
- Morita, N.; Black, A.D.; Fuh, G.-F. Borehole breakdown pressure with drilling fluids—I. Empirical results. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 39–51. [Google Scholar] [CrossRef]
- Sun, D.; Wang, H.; Hou, M.; Zhao, W.; Song, Q.; Liu, Z.; Niu, S. Factors influence the effects of hydrofracturing in a low-permeability oilfield and potential evaluation using artificial neural network. J. Geomech. 2006, 12, 485–491. [Google Scholar]
- Zhang, C.P.; Cheng, P.; Ma, Z.Y.; Ranjith, P.G.; Zhou, J.P. Comparison of fracturing unconventional gas reservoirs using CO2 and water: An experimental study. J. Pet. Sci. Eng. 2021, 203, 108598. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, Y.; Elsworth, D.; Fang, Y.; Tang, J. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. J. Pet. Sci. Eng. 2018, 165, 284–297. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Li, X.; Lin, C. Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects. J. Pet. Sci. Eng. 2019, 173, 932–940. [Google Scholar] [CrossRef]
- Chong, Z.; Yao, Q.; Li, X. Experimental investigation of fracture propagation behavior induced by hydraulic fracturing in anisotropic shale cores. Energies 2019, 12, 976. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; He, J.; Mao, T.; Zheng, B.; Li, G. A laboratory investigation of fracture propagation induced by supercritical carbon dioxide fracturing in continental shale with interbeds. J. Pet. Sci. Eng. 2018, 166, 739–746. [Google Scholar] [CrossRef]
- Jiang, Y.; Qin, C.; Kang, Z.; Zhou, J.; Li, Y.; Liu, H.; Song, X. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions. J. Nat. Gas Sci. Eng. 2018, 55, 382–394. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Tang, J.; Zhou, Z.; Liao, Y. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 2017, 190, 370–378. [Google Scholar] [CrossRef]
- Wang, L.; Yao, B.; Xie, H.; Kneafsey, T.J.; Winterfeld, P.H.; Yin, X.; Wu, Y.-S. Experimental investigation of injection-induced fracturing during supercritical CO2 sequestration. Int. J. Greenh. Gas Control 2017, 63, 107–117. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, G.; Wang, Y.; Xing, Y. Experimental investigation on fracture propagation modes in supercritical carbon dioxide fracturing using acoustic emission monitoring. Int. J. Rock Mech. Min. Sci. 2018, 110, 111–119. [Google Scholar] [CrossRef]
- Bing, Y.; Haizhu, W.; Zhonghou, S.; Qun, L.; Yong, Z.; Lujie, S. The supercritical CO2 fracturing experimental study on fracture initiation of different rocks. In Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019. [Google Scholar]
- Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- Anysz, H.; Zbiciak, A.; Ibadov, N. The influence of input data standardization method on prediction accuracy of artificial neural networks. Procedia Eng. 2016, 153, 66–70. [Google Scholar] [CrossRef]
- Son, S.; Jeong, Y.; Cho, S.K.; Lee, J.I. Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network. Appl. Energy 2020, 263, 114645. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Yang, C.; Xu, D.; Ge, J. Remaining useful life prediction of rolling bearings based on Pearson correlation-KPCA multi-feature fusion. Measurement 2022, 201, 111572. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Rahman, S.S.; Zhou, N.; Suo, Y. Predicting permeability changes with injecting CO2 in coal seams during CO2 geological sequestration: A comparative study among six SVM-based hybrid models. Sci. Total Environ. 2020, 705, 135941. [Google Scholar] [CrossRef]
Parameters | CN-Shale | PS-Sahle | Units |
---|---|---|---|
2546 | 2648 | kg/m3 | |
12.16 | 11.99 | GPa | |
Poisson’s ratio, ν | 0.20 | 0.25 | — |
15.63 | 18.18 | MPa | |
151.55 | 138.45 | MPa | |
5.00 | 4.47 | km/s | |
0.4 | 0.3 | % | |
Sampling site | Changning | Pengshui | — |
Bedding orientation | Perpendicular | Perpendicular | — |
Parameters | Biot Coefficient | (MPa) | ν | (m) | (m) |
---|---|---|---|---|---|
Value | 0.9 | 15.63 (1#~5#) 18.18 (6#~11#) | 0.20 (1#~5#) 0.25 (6#~11#) | 0.01 | 0.0024 (1#~5#) 0.0017 (6#~11#) |
Index | Calculation |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, M.; Liu, S.; Liu, H. Prediction of Breakdown Pressure Using a Multi-Layer Neural Network Based on Supercritical CO2 Fracturing Data. Appl. Sci. 2024, 14, 10545. https://doi.org/10.3390/app142210545
Zhang X, Zhang M, Liu S, Liu H. Prediction of Breakdown Pressure Using a Multi-Layer Neural Network Based on Supercritical CO2 Fracturing Data. Applied Sciences. 2024; 14(22):10545. https://doi.org/10.3390/app142210545
Chicago/Turabian StyleZhang, Xiufeng, Min Zhang, Shuyuan Liu, and Heyang Liu. 2024. "Prediction of Breakdown Pressure Using a Multi-Layer Neural Network Based on Supercritical CO2 Fracturing Data" Applied Sciences 14, no. 22: 10545. https://doi.org/10.3390/app142210545
APA StyleZhang, X., Zhang, M., Liu, S., & Liu, H. (2024). Prediction of Breakdown Pressure Using a Multi-Layer Neural Network Based on Supercritical CO2 Fracturing Data. Applied Sciences, 14(22), 10545. https://doi.org/10.3390/app142210545