Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach to Data Classification
2.2. AE Source Characteristic
2.3. Acoustic Waveguide Simulation
2.4. Data Sample Formation and Feature Calculation
3. Results
3.1. AE Source Study Results
3.2. Acoustic Waveguide Modeling Results
3.3. Classification Features Choice
3.4. Neural Network Classifier
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goncharov, A.L.; Marchenkov, A.Y.; Terentyev, E.V.; Zhmurko, I.E.; Sliva, A.P. Study of structural non-homogeneity impact on mechanical properties of dissimilar weld joints of carbon steel 20 and corrosion-resistant austenitic 12Kh18N10T steel. IOP Conf. Ser. Mater. Sci. Eng. 2019, 681, 012016. [Google Scholar] [CrossRef]
- Khodakov, V.D.; Khodakov, D.V. Structure and mechanism of formation of dissimilar welded joints in nuclear power plant made of austenitic and pearlitic steels. Weld. Int. 2016, 30, 935–940. [Google Scholar] [CrossRef]
- American Society for NDT (ASNT). Nondestructive Testing Handbook, 3rd ed.; Radiographic Testing (RT), ASNT: Columbus, OH, USA, 2002; Volume 4, p. 700. [Google Scholar]
- Bulavinov, A.; Kroning, M.; Walte, F.; Lui, J.; Reddy, K. Ultrasonic Inspection of Austenitic and Dissimilar Welds. In Proceedings of the IV Conferencia Panamericana de END, Buenos Aires, Argentina, 22–26 October 2007; pp. 1–13. [Google Scholar]
- Bazulin, E.G. Allowing for Inhomogeneous Anisotropy of a Welded Joint when Reconstructing Reflector Images from Echo Signals Received by an Ultrasonic Antenna Array. Russ. J. Nondestruct. Test. 2017, 53, 9–22. [Google Scholar] [CrossRef]
- Hwang, Y.-I.; Park, J.; Kim, H.-J.; Song, S.-J.; Cho, Y.-S.; Kang, S.-S. Performance Comparison of Ultrasonic Focusing Techniques for Phased Array Ultrasonic Inspection of Dissimilar Metal Welds. Int. J. Precis. Eng. Manuf. 2019, 20, 525–534. [Google Scholar] [CrossRef]
- Barat, V.; Marchenkov, A.; Bardakov, V.; Zhgut, D.; Karpova, M.; Balandin, T.; Elizarov, S. Assessment of the Structural State of Dissimilar Welded Joints by the Acoustic Emission Method. Appl. Sci. 2022, 12, 7213. [Google Scholar] [CrossRef]
- Barat, V.; Marchenkov, A.; Bardakov, V.; Karpova, M.; Zhgut, D.; Elizarov, S. Features of Acoustic Emission in Tensile Testing of Dissimilar Welded Joints of Pearlitic and Austenitic Steels. Appl. Sci. 2021, 11, 11892. [Google Scholar] [CrossRef]
- Grosse, C.U.; Ohtsu, M. (Eds.) Acoustic Emission Testing, Basics for Research–Applications in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2008; 414p. [Google Scholar]
- Ghadarah, N.; Ayre, D. A Review on Acoustic Emission Testing for Structural Health Monitoring of Polymer-Based Composites. Sensors 2023, 23, 6945. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Huang, J.; Li, Y.; Qin, R.; Wen, G.; Cheng, W.; Chen, X. Acoustic emission-based weld crack leakage monitoring via FGI and MCCF-CondenseNet convolutional neural network. NDT E Int. 2024, 148, 103232. [Google Scholar] [CrossRef]
- Cooper, C.; Wang, P.; Zhang, J.; Gao, R.X.; Roney, T.; Ragai, I.; Shaffer, D. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manuf. 2020, 49, 105–111. [Google Scholar] [CrossRef]
- Ji, H.W.; Lee, H.; Hwang, I. Supervised learning-based classification of acoustic emission and vibration signal for identifying condition change of district heating system. Measurement 2023, 220, 113388. [Google Scholar] [CrossRef]
- Li, D.; Chen, Q.; Wang, H.; Shen, P.; Li, Z.; He, W. Deep learning-based acoustic emission data clustering for crack evaluation of welded joints in field bridges. Autom. Constr. 2024, 165, 105540. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Yan, W.-J.; Ren, W.-X. Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network. Struct. Health Monit. 2020, 20, 1563–1582. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Linscheid, F.F.; Wiehler, M. An Experimentally Accessible Probability of Detection Model for Acoustic Emission Measurements. J. Nondestruct. Eval. 2018, 37, 17. [Google Scholar] [CrossRef]
- Barat, V.; Marchenkov, A.; Kritskiy, D.; Bardakov, V.; Karpova, M.; Kuznetsov, M.; Zaprudnova, A.; Ushanov, S.; Elizarov, S. Structural Health Monitoring of Walking Dragline Excavator Using Acoustic Emission. Appl. Sci. 2021, 11, 3420. [Google Scholar] [CrossRef]
- Dong, S.; You, J.; El-Attaouy, M.; Li, M.; Guo, L.; Cheng, Z.; Zhang, X.; Gong, S.; Wang, Y. Investigation of Lamb wave modes recognition and acoustic emission source localization for steel plate based on golden jackal optimization VMD parameters and CWT. Measurement 2025, 242, 116103. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Chen, J.; Meng, X.; Zhang, M.; Su, G.; Zhou, Y.; Zhou, Y.; Chen, Y. Multiple methods for acoustic emission source location in metal waveguides. Measurement 2024, 229, 114444. [Google Scholar] [CrossRef]
- Dubuc, B.; Ebrahimkhanlou, A.; Livadiotis, S.; Salamone, S. Inversion algorithm for Lamb-wave-based depth characterization of acoustic emission sources in plate-like structures. Ultrasonics 2019, 99, 105975. [Google Scholar] [CrossRef]
- Langer, H.; Falsaperla, S.; Hammer, C. Chapter 4—Applications of supervised learning. In Computational Geophysics, Advantages and Pitfalls of Pattern Recognition; Langer, H., Falsaperla, S., Hammer, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 3, pp. 127–187. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, W.; Jin, L.; Li, F.; Hou, Z. A novel feature representation method based on original waveforms for acoustic emission signals. Mech. Syst. Signal Process. 2020, 135, 106365. [Google Scholar] [CrossRef]
- Ewald, V.; Groves, R.M.; Benedictus, R. DeepSHM: A deep learning approach for structural health monitoring based on guided Lamb wave technique. In Proceedings of the SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, Denver, CO, USA, 27 March 2019; p. 109700H. [Google Scholar] [CrossRef]
- Adam, D. The Illustrated Wavelet Transform handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance; Addison, P.S., Ed.; Institute of Physics Publishing: Boca Raton, FL, USA, 2002; 353p. [Google Scholar]
- Ono, K. A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef]
- Brychta, R.J.; Shiavi, R.; Robertson, D.; Diedrich, A. Spike detection in human muscle sympathetic nerve activity using the kurtosis of stationary wavelet transform coefficients. J. Neurosci. Methods 2007, 160, 359–367. [Google Scholar] [CrossRef]
- Pakrashi, V.; Basu, B.; Connor, A.O. Structural damage detection and calibration using a wavelet–kurtosis technique. Eng. Struct. 2007, 29, 2097–2108. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Lokajicek, T.; Klima, K. A First Arrival Identification System of Acoustic Emission (AE) Signals by Means of a Higher-Order Statistics Approach. Meas. Sci. Technol. 2006, 17, 2461–2466. [Google Scholar] [CrossRef]
Steel Grade | C | Si | Mn | Ni | S | P | Cr | Cu | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|
12Kh18N10T | max 0.12 | max 0.8 | max 2 | 9–11 | max 0.02 | max 0.035 | 17–19 | max 0.3 | 0.4–1 | bal. |
20 | 0.17–0.24 | 0.17–0.37 | 0.35–0.65 | max 0.3 | max 0.04 | max 0.035 | max 0.25 | max 0.3 | max 0.08 | bal. |
C | Si | Cr | Ni | Mn | Fe |
---|---|---|---|---|---|
0.10 | 0.50 | 19.0 | 9.0 | 6.0 | Base |
No. of Heat Treatment Mode | Holding Time at 650 °C, h | Thickness of Decarburized Interlayer, µm | Thickness of Carbide Interlayer, µm |
---|---|---|---|
1 | 1 | 145 | 20 |
2 | 5 | 225 | 45 |
3 | 25 | 600 | 65 |
Steel Grade | Density, g/cm3 | Young’s Modulus, GPa | Poisson’s Ratio |
---|---|---|---|
12Kh18N10T steel | 7.9 | 200 | 0.3 |
Grade 20 steel | 7.8 | 210 | 0.3 |
Parameter | Range of Values |
---|---|
AE sensor axial coordinate, m | 0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4; 0.45; 0.5 |
AE sensor azimuthal coordinate, ° | 0°; 45°; 90°; 135°; 180° |
Source depth below the surface, mm | 0; 1.5 (middle-depth) |
Type of Specimen | Defect Free | With Diffusion Interlayers | ||
---|---|---|---|---|
~145 μm | ~225 μm | ~600 μm | ||
AE activity, 1/s | 0.12 | 0.38 | 0.52 | 0.43 |
Quantile 95% of amplitude distribution, dB | 34.3 | 41.2 | 44.1 | 43.1 |
Parameter | Parameter’s Equation | Initial Dimension | Pre-Processing Method | Final Dimension | |
---|---|---|---|---|---|
1 | Wavelet coefficients averaged in time | N—number of samples | 250 × 1 | Compresses 26 times with the help of DWT approximation order 6 | 62 × 1 |
2 | Frequency wavelet kurtosis | 250 × 1 | Compresses 26 with the help of DWT approximation order 6 | 62 × 1 | |
3 | Wavelet coefficients averaged in frequency | Nf—number of frequency coefficients | 10,000 × 1 | Compresses 26 times with the help of DWT approximation order 6 | 161 × 1 |
4 | Time wavelet kurtosis | 10,000 × 1 | Compresses 26 times with the help of DWT approximation order 6 | 161 × 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barat, V.; Marchenkov, A.; Bardakov, V.; Arzumanyan, D.; Ushanov, S.; Karpova, M.; Lepsheev, E.; Elizarov, S. Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method. Appl. Sci. 2024, 14, 10546. https://doi.org/10.3390/app142210546
Barat V, Marchenkov A, Bardakov V, Arzumanyan D, Ushanov S, Karpova M, Lepsheev E, Elizarov S. Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method. Applied Sciences. 2024; 14(22):10546. https://doi.org/10.3390/app142210546
Chicago/Turabian StyleBarat, Vera, Artem Marchenkov, Vladimir Bardakov, Dmitrij Arzumanyan, Sergey Ushanov, Marina Karpova, Egor Lepsheev, and Sergey Elizarov. 2024. "Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method" Applied Sciences 14, no. 22: 10546. https://doi.org/10.3390/app142210546
APA StyleBarat, V., Marchenkov, A., Bardakov, V., Arzumanyan, D., Ushanov, S., Karpova, M., Lepsheev, E., & Elizarov, S. (2024). Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method. Applied Sciences, 14(22), 10546. https://doi.org/10.3390/app142210546