Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
- Sensor types definition: definition of the exciter (Brüel & Kjær 8206) and response sensor (PDV-100) types and their assignment to individual channels of the LAN-XI module type 3050 was done;
- Geometric model creation: the planar geometric model of the analysed specimen was created. It consisted of the 48 points of defined coordinates, mutually connected by triangular surfaces (Figure 3);
- Measurement sequence definition: the measurement was planned in the form of the roving hammer-impact method and carried out using the fixed embedded vibrometer, i.e., 48 degrees of freedom (DOFs) representing the excitation points and 1 reference degree of freedom (REF): point 49 for response measurement. Excitations and response measurements were carried out perpendicularly to the specimen’s top surface, i.e., in the Z-direction, in all stages of the experimental texting. The blue annular surface in the scheme in Figure 4 corresponds to the clamped part of the specimen surface. The positions of the four bolts were, in each measurement, aligned to the 1-4-7-10 DOFs.
- Frequency span and resolution definition: the sampling frequency set to 1600 Hz allowed analysis of the dynamic behaviour of the specimen in the 0–800 Hz frequency span. The definition of the analysis lines number as equal to 400 ensured the frequency resolution of 2 Hz (acquisition time 500 ms);
- Triggering and weighting of the signals: after defining the proper level of trigger impact signal, and hammer and response weighting, the measurement of the FRFs was started.
3. Results
3.1. Realization and Evaluation of the Pre-Test Phase
3.1.1. Results Obtained in the Iref Stage of the Pre-Test Phase
3.1.2. Results Obtained in the II Stage of the Pre-Test Phase
3.1.3. Results Obtained in the III Stage of the Pre-Test Phase
3.1.4. Results Obtained in the IV Stage of the Pre-Test Phase
3.2. Comparison of the Results Obtained in the Pre-Test Phase
3.3. Realization and Evaluation of the Second Phase
- Realization of the experiments under the same conditions to minimize their influence on the values of the estimated modal parameters;
- Time efficiency in performing a larger series of measurements;
- Sufficient accuracy of the obtained measurement results.
4. Discussion
- The reference MISO analysis of the structure with 48 DOFs and one reference degree of freedom, realized with a frequency resolution of 2 Hz;
- The MISO analysis of the structure with 24 and 96 DOFs, respectively, and one reference degree of freedom, realized with a frequency resolution of 2 Hz;
- The MISO analysis of a structure with 48 DOFs and one reference degree of freedom realized with a frequency resolution of 1 Hz and 0.5 Hz, respectively;
- The MIMO analysis of a structure with 48 DOFs realized with a frequency resolution of 2 Hz, with emphasis on the choice of different numbers and locations of reference degrees of freedom.
5. Conclusions
- Establish a suitable and time-accessible methodology for determining the modal parameters of specimens produced using differently selected 3D printing parameters such as the layer height, fill density, printing speed, bed and nozzle temperature, raster angle, infill pattern, etc.;
- To use the results obtained by specialized means in performing experimental modal analysis for comparison with the results obtained by non-conventional methods of determining modal parameters, such as the digital image correlation method, which can not only speed up the time of conducting experiments but also, due to the number of measurement points, make the results of the analysis more accurate;
- Apply the conclusions obtained from the previous two points to define a suitable set of printing properties that will ensure the production of a product with the desired mechanical as well as modal properties;
- Use the measured data to fit/refine numerical models of the structures in question using parametric optimization tools. Using the FE model updating method, a homogenized model of the plates can also be created.
- Choose the number of excitation points (DOFs) appropriately. Note that, although the number of selected excitation points does not significantly affect the values of the modal parameters (natural frequencies, damping ratios), there are changes in the estimated mode shapes of vibration;
- Set the adequate number of lines in applying FFT. Note that an inappropriately set number of lines may lead to the underestimation of damping ratios;
- Define the location and number of response measurement points (reference degrees of freedom). An incorrectly chosen reference degree of freedom may lead to a reduction in the estimation of the modes of vibration. To obtain information about repeated modes, it is necessary to carry out a multiple-reference (MIMO) analysis. On the other hand, it should be taken into account that a larger number of reference degrees of freedom may lead to a significant increase in the time requirements;
- Monitor the value of mode complexity. A higher value of complexity may indicate coupling or crossing of the modes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- New Boeing 777X Completes Successful First Flight. Available online: https://investors.boeing.com/investors/news/press-release-details/2020/New-Boeing-777X-Completes-Successful-First-Flight/default.aspx (accessed on 17 September 2024).
- Pradeep, P.I.; Kumar, V.A.; Venkateswaran, T.; Aswin, S.; Nair, V.S.; Krishnan, A.; Akhil; Agilan, M.; Singh, S.K.; Narayanan, P.R. Processing and Characterization of 3D-Printed Inconel-718 Component through Laser Powder Bed Fusion Route for High-Temperature Space Application. Trans. Indian Natl. Acad. Eng. 2021, 6, 133–146. [Google Scholar] [CrossRef]
- Apalboym, M.; Kujiraoka, S. Advances in the Development of Missile Telemetry Test Sets: Utilizing 3D Printing for Rapid Prototyping and Manufacturing. In Proceedings of the International Telemetering Conference, Las Vegas, NV, USA, 26–29 October 2015. [Google Scholar]
- Ramesh Kumar, S.; Srinivas, V.; Jagan Reddy, G.; Raghavender Rao, M.; Raghu, T. 3D Printing of Fuel Injector in IN718 Alloy for Missile Applications. Trans. Indian Natl. Acad. Eng. 2021, 6, 1099–1109. [Google Scholar] [CrossRef]
- NASA’s Perseverance Rover Bringing 3D-Printed Metal Parts to Mars. Available online: https://www.nasa.gov/centers-and-facilities/jpl/nasas-perseverance-rover-bringing-3d-printed-metal-parts-to-mars/ (accessed on 17 September 2024).
- Broatch, A.; García-Tíscar, J.; Quintero, P.; Felgueroso, A. Rapid aerodynamic characterization of surface heat exchangers for turbofan aeroengines through optical techniques and additive manufacturing. Therm. Sci. Eng. Prog. 2024, 55, 102966. [Google Scholar] [CrossRef]
- Tilton, M.; Lewis, G.S.; Wee, H.B.; Armstrong, A.; Hast, M.W.; Manogharan, G. Additive manufacturing of fracture fixation implants: Design, material characterization, biomechanical modeling and experimentation. Addit. Manuf. 2020, 33, 101137. [Google Scholar] [CrossRef]
- Xu, J.; Tu, Z.; Zhang, S.; Tan, J.; Wang, G. Customized Design for Ergonomic Products via Additive Manufacturing Considering Joint Biomechanics. Chin. J. Mech. Eng. Addit. Manuf. Front. 2023, 2, 100085. [Google Scholar] [CrossRef]
- Vij, M.; Dand, N.; Sharma, S.; Nair, N.; Sahu, S.; Wadhwa, P. Role of 3D printing in biomechanics. In 3D Printing in Podiatric Medicine, 1st ed.; Sandhu, K., Singh, S., Prakash, C., Subburaj, K., Ramakrishna, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–33. [Google Scholar]
- Jiang, Y.; Islam, N.; He, R.; Huang, X.; Cao, P.F.; Advincula, R.C.; Dahotre, N.; Dong, P.; Wu, H.F.; Choi, W. Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Adv. Mater. Technol. 2023, 8, 2200492. [Google Scholar] [CrossRef]
- Jelva Hussan, K.S.; Subramaniam, M.P.; Mohammed Kenz, K.T.; Sreeram, P.; Parvathi, S.; Sari, P.S.; Pullanchiyodan, A.; Mulhivill, D.M.; Raghavan, P. Fabrication and challenges of 3D printed sensors for biomedical applications—Comprehensive review. Results Eng. 2024, 21, 101867. [Google Scholar] [CrossRef]
- Bas, J.; Dutta, T.; Llamas Garro, I.; Velázquez-González, J.S.; Dubey, R.; Mishra, S.K. Embedded Sensors with 3D Printing Technology: Review. Sensors 2024, 24, 1955. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; Liu, J.; Tu, Z.; Wu, X. Application of Additive Manufacturing in the Automobile Industry: A Mini Review. Processes 2024, 12, 1101. [Google Scholar] [CrossRef]
- Sivasubramanian, P.; Kumar, P.; Pradeepkumar, C. Additive manufacturing in automotive and aerospace technologies: Advancements, applications, and case studies. In Additive Manufacturing Materials and Technology; Rangappa, S.M., Ayyappan, V., Siengchin, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 85–98. [Google Scholar]
- Alami, A.H.; Olabi, A.G.; Alashkar, A.; Alasad, S.; Aljaghoub, H.; Rezk, H.; Abdelkareem, M.A. Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals. Ain Shams Eng. J. 2023, 14, 102516. [Google Scholar] [CrossRef]
- Zhao, N.; Parthasarathy, M.; Patil, S.; Coates, D.; Myers, K.; Zhu, H.; Li, W. Direct additive manufacturing of metal parts for automotive applications. J. Manuf. Syst. 2023, 68, 368–375. [Google Scholar] [CrossRef]
- Virgala, I.; Kelemen, M.; Prada, E.; Sukop, M.; Kot, T.; Bobovský, Z.; Varga, M.; Ferenčík, P. A snake robot for locomotion in a pipe using trapezium-like travelling wave. Mech. Mach. Theory 2021, 158, 104221. [Google Scholar] [CrossRef]
- Varga, M.; Sinčák, P.J.; Merva, T.; Marcinko, P.; Miková, Ľ.; Prada, E.; Schnitzer, M.; Virgala, I. Design and analyses of tendon-driven continuum robots for minimally invasive surgery. In Proceedings of the 18th IFAC Conference on Programmable Devices and Embedded Systems (PDES), Brno, Czech Republic, 19–21 June 2024. [Google Scholar]
- Hartomacıoğlu, S.; Kaya, E.; Eker, B.; Dağlı, S.; Sarıkaya, M. Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing. J. Mater. Res. Technol. 2024, 33, 3714–3727. [Google Scholar] [CrossRef]
- Brezas, S.; Katsipis, M.; Kaleris, K.; Papadaki, H.; Katerelos, D.T.G.; Papadogiannis, N.A.; Bakarezos, M.; Dimitriou, V.; Kaselouris, E. Review of Manufacturing Processes and Vibro-Acoustic Assessments of Composite and Alternative Materials for Musical Instruments. Appl. Sci. 2024, 14, 2293. [Google Scholar] [CrossRef]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef]
- Lanzotti, A.; Grasso, M.; Staiano, G.; Martorelli, M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J. 2015, 21, 604–617. [Google Scholar] [CrossRef]
- Daly, M.; Tarfaoui, M.; Chihi, M.; Bouraoui, C. FDM technology and the effect of printing parameters on the tensile strength of ABS parts. Int. J. Adv. Manuf. Technol. 2023, 126, 5307–5323. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núnez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Rodríguez-Panes, A.; Claver, J.; Camacho, A.M. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef]
- Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print. Addit. Manuf. 2016, 3, 183–192. [Google Scholar] [CrossRef]
- Peng, W.; Bin, Z.O.U.; Shouling, D.; Lei, L.I.; Huang, C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J. Aeronaut. 2021, 34, 236–246. [Google Scholar]
- Behzadnasab, M.; Yousefi, A.A. Effects of 3D printer nozzle head temperature on the physical and mechanical properties of PLA based product. In Proceedings of the 12th International Seminar on Polymer Science and Technology, Tehran, Iran, 2–5 November 2016. [Google Scholar]
- Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 2017, 248, 1–7. [Google Scholar] [CrossRef]
- Hill, N.; Haghi, M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate. Rapid Prototyp. J. 2014, 20, 221–227. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Mulholland, T.; Osswald, T. Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling. Polym. Advan. Technol. 2019, 30, 2122–2135. [Google Scholar] [CrossRef]
- Birosz, M.T.; Ledenyák, D.; Andó, M. Effect of FDM infill patterns on mechanical properties. Polym. Test. 2022, 113, 107654. [Google Scholar] [CrossRef]
- Foltut, D.; Valean, E.; Dzitac, V.; Marsavina, L. The influence of temperature on the mechanical properties of 3D printed and injection molded ABS. Mater. Today Proc. 2023, 78, 210–213. [Google Scholar] [CrossRef]
- Bakar, A.A.B.A.; Bin Zainuddin, M.Z.; Bin Adam, A.N.; Noor, I.S.B.M.; Bin Tamchek, N.; Bin Alauddin, M.S.; Ghazali, M.I.B.M. The study of mechanical properties of poly(lactic) acid PLA-based 3D printed filament under temperature and environmental conditions. Mater. Today Proc. 2022, 67, 652–658. [Google Scholar] [CrossRef]
- Ale Ali, R.; Karimi, H.R.; Mohamadi, R. PLA-based additively manufactured samples with different infill percentages under freeze-thaw cycles; mechanical, cracking, and microstructure characteristics. Theor. Appl. Mech. Lett. 2024; in press. [Google Scholar] [CrossRef]
- Ozcanli, O. Modal Analysis of 3D Printed Parts. M07MAE—Individual Project; Coventry University: Coventry, UK, 2017. [Google Scholar]
- Iyibilgin, O.; Dal, H.; Gepek, E. Experimental modal analysis of 3D printed beams. In Proceedings of the 4th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry 2019, Antalya, Turkey, 11–14 April 2019. [Google Scholar]
- Rajkumar, S.M. Effect of Infill Pattern and Build Orientation on Mechanical Properties of FDM Printed Parts: An Experimental Modal Analysis Approach. arXiv 2022, arXiv:2202.05692. Available online: https://arxiv.org/pdf/2202.05692 (accessed on 19 September 2024).
- Nguyen, H.T.; Crittenden, K.; Weiss, L.; Bardaweel, H. Experimental Modal Analysis and Characterization of Additively Manufactured Polymers. Polymers 2022, 14, 2071. [Google Scholar] [CrossRef]
- Katunin, A.; Huňady, R.; Hagara, M. Damage Identification in Composite Structures Using High-Speed 3D Digital Image Correlation and Wavelet Analysis of Mode Shapes. Nondestruct. Test. Eval. 2024; in press. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Nozzle diameter | 0.4 mm |
Layer height | 0.2 mm |
Fill density | 15% |
Nozzle temperature | 205 °C |
Bed temperature | 50 °C |
Build orientation | flat |
Top/bottom solid layers | 4/4 |
Perimeters | 3 |
Printing speed | 60 mm/s |
Infill Pattern | Weight (g) |
---|---|
Honeycomb | 151.55 |
Star | 148.49 |
Concentric | 148.42 |
Stage | Torque (Nm) | DOFs | REFs | Sampling Frequency (Hz) | Analysis Lines | NoM | NoE |
---|---|---|---|---|---|---|---|
Iref | 6 | 1 to 48 | 49 | 1600 | 400 | 3 | 3 |
IIA | 6 | 1 to 24 | 25 | 1600 | 400 | 3 | 3 |
IIB | 6 | 1 to 96 | 97 | 1600 | 400 | 3 | 3 |
IIIA | 6 | 1 to 48 | 49 | 1600 | 800 | 3 | 3 |
IIIB | 6 | 1 to 48 | 49 | 1600 | 1600 | 3 | 3 |
IVA | 6 | 1 to 48 | 49, 50, 51 | 1600 | 400 | 3 | 3 |
IVB | 49, 50 | 3 | |||||
IVC | 49, 51 | 3 | |||||
IVD | 50, 51 | 3 | |||||
IVE | 51 | 3 | |||||
IVF | 50 | 3 | |||||
Total: | 18 | 33 |
Stage | Estimated Natural Frequencies (Hz) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9 | Mode 10 | Mode 11 | |
Iref1 | 65.4 | 75.5 | 85.1 | 154.9 | 263.3 | 401.3 | 421.6 | 452.1 | 465.3 | 544.9 | 694.9 |
Iref2 | 65.2 | 75.4 | 85.2 | 155.2 | 263.5 | 401.4 | 420.8 | 451.3 | 464.5 | 544.5 | 695.0 |
Iref3 | 65.4 | 75.7 | 85.6 | 156.0 | 264.8 | 403.3 | 422.1 | 452.1 | 466.2 | 546.0 | 696.9 |
Iref(mean) | 65.3 | 75.5 | 85.3 | 155.4 | 263.9 | 402.0 | 421.5 | 451.8 | 465.3 | 545.1 | 695.6 |
Stage | Estimated Damping Ratios (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9 | Mode 10 | Mode 11 | |
Iref1 | 1.448 | 1.440 | 1.262 | 0.879 | 0.712 | 0.618 | 0.771 | 0.586 | 0.699 | 0.559 | 0.605 |
Iref2 | 1.418 | 1.425 | 1.206 | 0.794 | 0.697 | 0.601 | 0.728 | 0.648 | 0.739 | 0.554 | 0.584 |
Iref3 | 1.514 | 1.431 | 1.257 | 0.851 | 0.710 | 0.613 | 0.784 | 0.657 | 0.733 | 0.558 | 0.572 |
Iref(mean) | 1.460 | 1.432 | 1.242 | 0.841 | 0.706 | 0.611 | 0.761 | 0.630 | 0.724 | 0.557 | 0.587 |
Stage | Estimated Natural Frequency (Hz) | MVRD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9 | Mode 10 | Mode 11 | ||
Iref (mean) | 65.3 | 75.5 | 85.3 | 155.4 | 263.9 | 402.0 | 421.5 | 451.8 | 465.3 | 545.1 | 695.6 | ----- |
IIA (mean) | 65.2 | 75.9 | 84.4 | 153.8 | 261.6 | 398.9 | 420.1 | 449.3 | 463.0 | 541.7 | 690.7 | 0.65% |
IIB (mean) | 65.1 | 75.6 | 84.7 | 154.4 | 262.3 | 399.6 | 420.1 | 449.3 | 463.0 | 542.3 | 691.7 | 0.49% |
IIIA (mean) | 65.2 | 76.0 | 85.9 | 156.3 | 264.7 | 402.7 | 420.7 | 450.7 | 464.1 | 544.3 | 694.8 | 0.32% |
IIIB (mean) | 65.4 | 76.3 | 85.4 | 155.5 | 264.1 | 402.3 | 421.7 | 451.3 | 464.9 | 544.7 | 694.9 | 0.08% |
IVA (mean) | 64.9 α | 75.5 | 84.9 α | 155.7 α | 263.3 α | 401.8 | 419.3 | 448.9 | 462.0 | 541.6 α | 691.2 α | 0.43% |
65.5 β | 85.5 β | 155.8 β | 264.0 β | 541.9 β | 691.8 β | 0.35% | ||||||
IVB (mean) | 64.9 α | 75.5 | 84.9 α | 155.4 α | 263.3 α | 401.8 | 419.3 | 448.9 | 462.0 | 541.5 α | 691.1 α | 0.41% |
65.5 β | 85.4 β | 155.5 β | 264.0 β | 541.9 β | 691.4 β | 0.36% | ||||||
IVC (mean) | 64.9 α | 75.5 | 84.9 α | 155.2 α | 263.3 α | 402.4 | 419.1 | 448.8 | 462.1 | 541.8 α | 691.2 α | 0.42% |
65.5 β | 85.4 β | 156.0 β | 264.3 β | † | † | 0.33% | ||||||
IVD (mean) | 64.9 α | 75.5 | 84.9 α | 155.2 α | 263.4 α | 401.7 | 419.2 | 448.9 | 462.1 | 541.9 α | 691.1 α | 0.41% |
65.5 β | 85.5 β | 155.6 β | 264.0 β | † | † | 0.29% | ||||||
IVE (mean) | 65.4 | 75.5 | 85.1 | 155.6 | 263.7 | 401.6 | † | † | † | 542.6 | 691.7 | 0.21% |
IVF (mean) | 65.2 | † | 85.1 | 155.6 | 263.7 | † | 419.2 | 448.9 | 462.1 | 541.9 | 691.4 | 0.41% |
Stage | Estimated Damping Ratio (%) | MVRD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9 | Mode 10 | Mode 11 | ||
Iref | 1.460 | 1.432 | 1.242 | 0.841 | 0.706 | 0.611 | 0.761 | 0.630 | 0.724 | 0.557 | 0.587 | ----- |
IIA | 1.461 | 1.426 | 1.289 | 0.914 | 0.742 | 0.630 | 0.778 | 0.654 | 0.744 | 0.568 | 0.579 | 3.03% |
IIB | 1.459 | 1.448 | 1.277 | 0.900 | 0.723 | 0.624 | 0.785 | 0.635 | 0.722 | 0.567 | 0.585 | 1.99% |
IIIA | 1.018 | 1.050 | 0.893 | 0.617 | 0.598 | 0.548 | 0.684 | 0.543 | 0.672 | 0.514 | 0.558 | 16.46% |
IIIB | 0.785 | 0.820 | 0.702 | 0.576 | 0.543 | 0.541 | 0.661 | 0.540 | 0.634 | 0.500 | 0.519 | 19.77% |
IVA | 1.575 α | 1.369 | 1.272 α | 0.948 α | 0.729 α | 0.612 | 0.775 | 0.673 | 0.684 | 0.627 α | 0.633 α | 5.95% |
1.505 β | 1.307 β | 0.860 β | 0.720 β | 0.601 β | 0.600 β | 3.77% | ||||||
IVB | 1.571 α | 1.445 | 1.260 α | 0.932 α | 0.748 α | 0.630 | 0.786 | 0.685 | 0.687 | 0.585 α | 0.611 α | 5.10% |
1.506 β | 1.273 β | 0.882 β | 0.719 β | 0.573 β | 0.592 β | 3.41% | ||||||
IVC | 1.510 α | 1.404 | 1.214 α | 0.883 α | 0.735 α | 0.668 | 0.783 | 0.628 | 0.779 | 0.581 α | 0.630 α | 4.41% |
1.487 β | 1.238 β | 0.741 β | 0.724 β | † | † | 4.30% | ||||||
IVD | 1.562 α | 1.369 | 1.250 α | 0.914 α | 0.727 α | 0.635 | 0.766 | 0.649 | 0.817 | 0.553 α | 0.626 α | 4.68% |
1.502 β | 1.286 β | 0.888 β | 0.721 β | † | † | 3.89% | ||||||
IVE | 1.440 | 1.399 | 1.270 | 0.865 | 0.720 | 0.613 | † | † | † | 0.529 | 0.575 | 2.27% |
IVF | 1.506 | † | 1.267 | 0.854 | 0.701 | † | 0.769 | 0.646 | 0.827 | 0.560 | 0.590 | 2.92% |
Measurement | Torque (Nm) | DOF | REF | Sampling Frequency (Hz) | Analysis Lines | NoM | NoE |
---|---|---|---|---|---|---|---|
Iref1–3 & Hj (for j = 4 to 10) | 6 | 1 to 48 | 49 | 1600 | 400 | 10 | 10 |
Sk (for k = 1 to 10) | 6 | 1 to 48 | 49 | 1600 | 400 | 10 | 10 |
Ck (for k = 1 to 10) | 6 | 1 to 48 | 49 | 1600 | 400 | 10 | 10 |
Total: | 30 | 30 |
Infill Pattern | Estimated Natural Frequencies (Hz) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9 | Mode 10 | Mode 11 | |
Honeycomb | 65.3 ± 0.1 | 75.5 ± 0.2 | 85.4 ± 0.3 | 155.6 ± 0.6 | 264.4 ± 0.7 | 402.5 ± 1.1 | 422.0 ± 0.7 | 451.7 ± 0.6 | 465.2 ± 0.9 | 545.2 ± 0.7 | 695.9 ± 1.0 |
Star | 67.3 ± 0.1 | 76.5 ± 0.2 | 88.3 ± 0.2 | 161.9 ± 0.3 | 275.0 ± 0.4 | 418.0 ± 0.4 | 433.7 ± 1.0 | 462.8 ± 0.4 | 473.9 ± 0.6 | 559.5 ± 0.4 | 714.3 ± 0.6 |
Concentric | 66.3 ± 0.2 | † | 83.6 ± 0.2 | 155.9 ± 0.4 | 267.0 ± 0.5 | 349.9 ± 1.0 | 407.6 ± 0.5 | 415.7 ± 1.0 | 432.2 ± 1.0 | 511.7 ± 0.9 | 674.6 ± 0.9 |
Infill Pattern | Estimated Damping Ratios (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9 | Mode 10 | Mode 11 | |
Honeycomb | 1.484 ± 0.032 | 1.444 ± 0.020 | 1.258 ± 0.023 | 0.865 ± 0.036 | 0.710 ± 0.009 | 0.614 ± 0.022 | 0.755 ± 0.025 | 0.641 ± 0.020 | 0.703 ± 0.033 | 0.548 ± 0.021 | 0.583 ± 0.018 |
Star | 1.453 ± 0.021 | 1.462 ± 0.018 | 1.287 ± 0.016 | 0.859 ± 0.014 | 0.698 ± 0.012 | 0.614 ± 0.016 | 0.865 ± 0.018 | 0.699 ± 0.011 | 0.841 ± 0.022 | 0.612 ± 0.012 | 0.559 ± 0.017 |
Concentric | 1.536 ± 0.037 | † | 1.182 ± 0.015 | 0.793 ± 0.060 | 0.700 ± 0.024 | 1.111 ± 0.045 | 0.665 ± 0.019 | 0.879 ± 0.044 | 0.968 ± 0.038 | 0.579 ± 0.021 | 0.532 ± 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagara, M.; Pástor, M.; Lengvarský, P.; Palička, P.; Huňady, R. Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study. Appl. Sci. 2024, 14, 10609. https://doi.org/10.3390/app142210609
Hagara M, Pástor M, Lengvarský P, Palička P, Huňady R. Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study. Applied Sciences. 2024; 14(22):10609. https://doi.org/10.3390/app142210609
Chicago/Turabian StyleHagara, Martin, Miroslav Pástor, Pavol Lengvarský, Peter Palička, and Róbert Huňady. 2024. "Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study" Applied Sciences 14, no. 22: 10609. https://doi.org/10.3390/app142210609
APA StyleHagara, M., Pástor, M., Lengvarský, P., Palička, P., & Huňady, R. (2024). Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study. Applied Sciences, 14(22), 10609. https://doi.org/10.3390/app142210609