PIC Simulation of Enhanced Electron Acceleration in a Double Nozzle Gas Target Using Spatial–Temporal Coupling with Axiparabola Optics
Abstract
:1. Introduction
2. Materials and Methods
- TH beam focused using an OAP;
- TH beam focused using an AXP;
- TH beam focused using an AXP+STC, allowing control of the laser pulse’s front curvature.
3. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PIC | Particle-In-Cell |
FBPIC | Fourier–Bessel Particle-In-Cell |
TH | Top-Hat |
OAP | Off-AxisParabola |
AXP | AXiParabola |
AXP+STC | AXiParabola with additional Spatial–Temporal Coupling |
LWFA | Laser WakeField Acceleration |
VHEE | Very High Energy Electrons |
DLWFA | Dephasingless Laser WakeField Accelerator |
References
- Malka, V.; Faure, J.; Gauduel, Y.A.; Lefebvre, E.; Rousse, A.; Phuoc, K.T. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 2008, 4, 447–453. [Google Scholar] [CrossRef]
- Joshi, C.; Corde, S.; Mori, W. Perspectives on the generation of electron beams from plasma-based accelerators and their near and long term applications. Phys. Plasmas 2020, 27, 070602. [Google Scholar] [CrossRef]
- Hooker, S.M. Developments in laser-driven plasma accelerators. Nat. Photonics 2013, 7, 775–782. [Google Scholar] [CrossRef]
- Tomkus, V.; Girdauskas, V.; Abedi-Varaki, M.; Raciukaitis, G. Laser wakefield acceleration of electrons using Bessel–Gauss doughnut beams for accelerating beam guiding. J. Plasma Phys. 2023, 89, 905890209. [Google Scholar] [CrossRef]
- DesRosiers, C.; Moskvin, V.; Bielajew, A.F.; Papiez, L. 150–250 MeV electron beams in radiation therapy. Phys. Med. Biol. 2000, 45, 1781. [Google Scholar] [CrossRef] [PubMed]
- Ronga, M.G.; Cavallone, M.; Patriarca, A.; Leite, A.M.; Loap, P.; Favaudon, V.; Créhange, G.; De Marzi, L. Back to the future: Very high-energy electrons (VHEEs) and their potential application in radiation therapy. Cancers 2021, 13, 4942. [Google Scholar] [CrossRef] [PubMed]
- Polanek, R.; Hafz, N.A.; Lécz, Z.; Papp, D.; Kamperidis, C.; Brunner, S.; Szabó, E.R.; Tőkés, T.; Hideghéty, K. 1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 987, 164841. [Google Scholar] [CrossRef]
- Smartsev, S.; Caizergues, C.; Oubrerie, K.; Gautier, J.; Goddet, J.-P.; Tafzi, A.; Phuoc, K.T.; Malka, V.; Thaury, C. Axiparabola: A long-focal-depth, high-resolution mirror for broadband high-intensity lasers. Opt. Lett. 2019, 44, 3414–3417. [Google Scholar] [CrossRef] [PubMed]
- Oubrerie, K.; Andriyash, I.A.; Lahaye, R.; Smartsev, S.; Malka, V.; Thaury, C. Axiparabola: A new tool for high-intensity optics. J. Opt. 2022, 24, 045503. [Google Scholar] [CrossRef]
- Geng, P.-F.; Chen, M.; Zhu, X.-Z.; Liu, W.-Y.; Sheng, Z.-M.; Zhang, J. Propagation of axiparabola-focused laser pulses in uniform plasmas. Phys. Plasmas 2022, 29, 112301. [Google Scholar] [CrossRef]
- Liberman, A.; Lahaye, R.; Smartsev, S.; Tata, S.; Benracassa, S.; Golovanov, A.; Levine, E.; Thaury, C.; Malka, V. Use of spatiotemporal couplings and an axiparabola to control the velocity of peak intensity. Opt. Lett. 2024, 49, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.G.; Pierce, J.R.; Ambat, M.V.; Shaw, J.L.; Weichman, K.; Mori, W.B.; Froula, D.H.; Palastro, J.P. Author Correction: Dephasingless laser wakefield acceleration in the bubble regime. Sci. Rep. 2024, 14, 4870. [Google Scholar] [CrossRef] [PubMed]
- Golovin, G.; Chen, S.; Powers, N.; Liu, C.; Banerjee, S.; Zhang, J.; Zeng, M.; Sheng, Z.; Umstadter, D. Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 011301. [Google Scholar] [CrossRef]
- Lehe, R.; Kirchen, M.; Andriyash, I.A.; Godfrey, B.B.; Vay, J.-L. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm. Comput. Phys. Commun. 2016, 203, 66–82. [Google Scholar] [CrossRef]
- Tomkus, V.; Mackevičiūtė, M.; Dudutis, J.; Girdauskas, V.; Abedi-Varaki, M.; Gečys, P.; Račiukaitis, G. Laser-machined two-stage nozzle optimised for laser wakefield acceleration. J. Plasma Phys. 2024, 90, 965900102. [Google Scholar] [CrossRef]
- Palastro, J.; Shaw, J.; Franke, P.; Ramsey, D.; Simpson, T.; Froula, D. Dephasingless laser wakefield acceleration. Phys. Rev. Lett. 2020, 124, 134802. [Google Scholar] [CrossRef] [PubMed]
- Caizergues, C.; Smartsev, S.; Malka, V.; Thaury, C. Phase-locked laser-wakefield electron acceleration. Nat. Photonics 2020, 14, 475–479. [Google Scholar] [CrossRef]
Physical Parameters | Values |
---|---|
Pulse duration (FWHM), τ0 (fs) | 10 |
Pulse centre start position, z0 (µm) | 20 |
Pulse length (FWHM), L0 = cτ0 (µm) | 3 |
Laser strength parameter, a0 | 1.5–2.5 |
Laser wavelength, λ (µm) | 0.8 |
Laser pulse energy, (mJ) | 85 |
Focus position, zfoc (µm) | 430 |
Beam waist, w0 (µm) | 5 |
Rayleigh range for Gaussian beam, zR (µm) | 98 |
Rayleigh range for Bessel–Gauss beam, zR (µm) | 800 |
Hydrogen concentration, natoms (1019 cm−3) | 1.2 |
Start position in z (µm) | 0 |
Total z-extension, (µm) | 800 |
Ramp length of the first nozzle (µm) | 10 |
Ionisation injection zone length (µm) | 200 |
Plasma wavelength, λp (µm) | 9.5 |
Simulation Parameters | Values |
---|---|
Number of grid points along z | 600 |
Number of grid points for Gaussian beam along r | 300 |
Number of grid points for Bessel–Gauss beam along r | 600 |
Number of particles per cell along z | 2 |
Number of particles per cell along r | 2 |
Number of particles per cell along θ | 3 |
Number of azimuthal modes, nm | 3 |
Simulation box size along, z (µm) | 30 |
Simulation box size for Gaussian beam along, r (µm) | 60 |
Simulation box size for Bessel-Gaussian beam along, r (µm) | 200 |
Speed of the moving window, vw(c) | 1 |
Simulation time step, Δt (fs) | 1/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girdauskas, V.; Tomkus, V.; Abedi-Varaki, M.; Račiukaitis, G. PIC Simulation of Enhanced Electron Acceleration in a Double Nozzle Gas Target Using Spatial–Temporal Coupling with Axiparabola Optics. Appl. Sci. 2024, 14, 10611. https://doi.org/10.3390/app142210611
Girdauskas V, Tomkus V, Abedi-Varaki M, Račiukaitis G. PIC Simulation of Enhanced Electron Acceleration in a Double Nozzle Gas Target Using Spatial–Temporal Coupling with Axiparabola Optics. Applied Sciences. 2024; 14(22):10611. https://doi.org/10.3390/app142210611
Chicago/Turabian StyleGirdauskas, Valdas, Vidmantas Tomkus, Mehdi Abedi-Varaki, and Gediminas Račiukaitis. 2024. "PIC Simulation of Enhanced Electron Acceleration in a Double Nozzle Gas Target Using Spatial–Temporal Coupling with Axiparabola Optics" Applied Sciences 14, no. 22: 10611. https://doi.org/10.3390/app142210611
APA StyleGirdauskas, V., Tomkus, V., Abedi-Varaki, M., & Račiukaitis, G. (2024). PIC Simulation of Enhanced Electron Acceleration in a Double Nozzle Gas Target Using Spatial–Temporal Coupling with Axiparabola Optics. Applied Sciences, 14(22), 10611. https://doi.org/10.3390/app142210611