Landslide Susceptibility Assessment in Hong Kong with Consideration of Spatio-Temporal Consistency
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
3. Methodology
3.1. Multicollinearity Analysis
3.2. Machine Learning
3.2.1. Random Forest
3.2.2. Support Vector Machine
3.3. Model Validation
4. Results
4.1. Results of Multicollinearity Analysis
4.2. Model Performance
4.3. Landslide Susceptibility Mapping
5. Discussion
5.1. Data Distribution
5.2. Assessment Factor Importance Analysis
5.3. Typical Region Analysis
5.3.1. Comparison of Boundary Areas of Different Terrains
5.3.2. Comparison of Interface Areas of Different Land Covers
5.3.3. Areas with Significant Changes in Landslide Susceptibility
5.4. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2013, 73, 209–263. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Luo, J.; Liu, D.J.N.H. A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping. Nat. Hazards 2021, 109, 471–497. [Google Scholar] [CrossRef]
- Xing, Y.; Yue, J.; Guo, Z.; Chen, Y.; Hu, J.; Travé, A. Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang mountains of China. Front. Earth Sci. 2021, 9, 722491. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Rajamanickam, V. Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model. Nat. Hazards 2011, 59, 401–425. [Google Scholar] [CrossRef]
- Chen, T.; Zhong, Z.; Niu, R.; Liu, T.; Chen, S.J.G. Mapping landslide susceptibility based on deep belief network. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1809–1817. [Google Scholar]
- Liu, M.; Liu, J.; Xu, S.; Zhou, T.; Ma, Y.; Zhang, F.; Konečný, M. Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province. Int. J. Image Data Fusion 2021, 12, 349–366. [Google Scholar] [CrossRef]
- Maurizio, L.; Maria, D. A multi temporal kernel density estimation approach for new triggered landslides forecasting and susceptibility assessment. Disaster Adv. 2012, 5, 100–108. [Google Scholar]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull. Eng. Geol. Environ. 2018, 77, 647–664. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M.B. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef]
- Merghadi, A.; Abderrahmane, B.; Tien Bui, D. Landslide susceptibility assessment at Mila Basin (Algeria): A comparative assessment of prediction capability of advanced machine learning methods. ISPRS Int. J. Geo-Inf. 2018, 7, 268. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, M.; Liu, K. Comparisons of convolutional neural network and other machine learning methods in landslide susceptibility assessment: A case study in Pingwu. Remote Sens. 2023, 15, 798. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Hong, H.; Shahabi, H.; Pradhan, B.; Liu, J.; Zhu, A.-X.; Pei, X.; Duan, Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci. Total Environ. 2018, 626, 1121–1135. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Liu, Y. Mapping landslide susceptibility using machine learning algorithms and GIS: A case study in Shexian County, Anhui Province, China. Symmetry 2020, 12, 1954. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, Q.; Ding, Y.; Hu, H.; Chen, L.; Xie, X.; Chen, M.; Yao, Y. Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation. Int. J. Geogr. Inf. Sci. 2022, 36, 2270–2295. [Google Scholar] [CrossRef]
- Jiping, L.; Enjie, L.; Shenghua, X.; Mengmeng, L.; Yong, W.; Fuhao, Z.; An, L. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility. Acta Geodaetica Cartogr. Sin. 2022, 51, 2034–2045. [Google Scholar]
- Shuai, B.; Jiping, L.; Liang, W. Landslide Susceptibility Evaluation Based on Combined DBSCAN Cluster Sampling and SVM Classification. Technol. Earthq. Disaster Prev. 2021, 16, 625–636. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Z.a.; Yang, W.; Yan, H.; Wang, W.; Yao, S.; Zhang, L.; Liu, T. A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102508. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, H.; Dahal, A.; Cheng, W.; Zhao, M.; Lombardo, L. On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values. Geosci. Front. 2024, 15, 101800. [Google Scholar] [CrossRef]
- Wei, X.; Gardoni, P.; Zhang, L.; Tan, L.; Liu, D.; Du, C.; Li, H. Improving pixel-based regional landslide susceptibility mapping. Geosci. Front. 2024, 15, 101782. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; He, J.; Cheung, R.W.M. AI-powered landslide susceptibility assessment in Hong Kong. Eng. Geol. 2021, 288, 106103. [Google Scholar] [CrossRef]
- Chen, L.; Ma, P.; Yu, C.; Zheng, Y.; Zhu, Q.; Ding, Y. Landslide susceptibility assessment in multiple urban slope settings with a landslide inventory augmented by InSAR techniques. Eng. Geol. 2023, 327, 107342. [Google Scholar] [CrossRef]
- Chau, K.T.; Sze, Y.L.; Fung, M.K.; Wong, W.Y.; Fong, E.L.; Chan, L.C.P. Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput. Geosci. 2004, 30, 429–443. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, X.; Li, Y.; Xu, P.; Xia, W. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides 2020, 18, 281–302. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, L.; Peduto, D.; Glade, T.; Hayakawa, Y.S.; Yin, K. Ensemble learning framework for landslide susceptibility mapping: Different basic classifier and ensemble strategy. Geosci. Front. 2023, 14, 101645. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.; Yin, J.; Du, A.; Zhang, A.; Wang, L.; Guo, H.; Li, D. A novel CGBoost deep learning algorithm for coseismic landslide susceptibility prediction. Geosci. Front. 2024, 15, 101770. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 2020, 35, 321–347. [Google Scholar] [CrossRef]
- Wang, D.; Hao, M.; Chen, S.; Meng, Z.; Jiang, D.; Ding, F. Assessment of landslide susceptibility and risk factors in China. Nat. Hazards 2021, 108, 3045–3059. [Google Scholar] [CrossRef]
- Titti, G.; Borgatti, L.; Zou, Q.; Cui, P.; Pasuto, A. Landslide susceptibility in the Belt and Road Countries: Continental step of a multi-scale approach. Environ. Earth Sci. 2021, 80, 630. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, J.; Peart, M.R.; Ng, C.N.; Hau, B.C.H.; Law, W.W. Exploration of severities of rainfall and runoff extremes in ungauged catchments: A case study of Lai Chi Wo in Hong Kong, China. Sci. Total Environ. 2018, 634, 640–649. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Common Spatial Data Infrastructure. Administrative Area Data (Small Area Statistics). Available online: https://portal.csdi.gov.hk/geoportal/?from=0&size=10&cat=Administrative%20Area%20FSDT#searchPanel (accessed on 5 November 2024).
- Geospatial Data Cloud. Elevation Data. Available online: https://www.gscloud.cn/ (accessed on 5 November 2024).
- Civil Engineering and Development Department (CEDD) of Hong Kong. Lithology Data. Available online: https://www.cedd.gov.hk/filemanager/eng/share/map/geo_map_2.html (accessed on 5 November 2024).
- G.R.D.C. Rainfall Data. Available online: http://www.gis5g.com/data/qxsj?id=288 (accessed on 5 November 2024).
- N.E.S.D.C. NDVI Data. Available online: http://www.nesdc.org.cn/sdo/detail?id=60f68d757e28174f0e7d8d49 (accessed on 5 November 2024).
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y.; et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Jie, Y.; Xin, H. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Lee, C.-W. Assessment of Landslide Susceptibility Using Statistical- and Artificial Intelligence-Based FR–RF Integrated Model and Multiresolution DEMs. Remote Sens. 2019, 11, 999. [Google Scholar] [CrossRef]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Ermini, L.; Catani, F.; Casagli, N. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 2005, 66, 327–343. [Google Scholar] [CrossRef]
- Turner, A.K.; Schuster, R.L. Landslides: Investigation and Mitigation; Transportation Research Board Special Report 247; National Academy of Sciences: Washington, DC, USA, 1996; ISBN 0-309-06151-2. [Google Scholar]
- Wong, H. Forty years of slope engineering in Hong Kong. In Proceedings of the HKIE Geotechnical Division Annual Seminar, Hong Kong, 19 May 2017; pp. 1–10. [Google Scholar]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Ip, S.C.; Rahardjo, H.; Satyanaga, A. Three-dimensional slope stability analysis incorporating unsaturated soil properties in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2021, 15, 98–112. [Google Scholar] [CrossRef]
- Li, H.W.M.; Lo, F.L.C.; Wong, T.K.C.; Cheung, R.W.M. Machine Learning-Powered Rainfall-Based Landslide Predictions in Hong Kong—An Exploratory Study. Appl. Sci. 2022, 12, 6017. [Google Scholar] [CrossRef]
- Vasić, M.V.; Jantunen, H.; Mijatović, N.; Nelo, M.; Velasco, P.M. Influence of coal ashes on fired clay brick quality: Random forest regression and artificial neural networks modeling. Appl. Sci. 2023, 407, 137153. [Google Scholar] [CrossRef]
- Ray, R.; Lazzari, M. Landslides-Investigation and Monitoring; IntechOpen: London, UK, 2020. [Google Scholar]
2000–2004 | 2005–2019 | 2010–2014 | 2015–2019 | |
---|---|---|---|---|
Elevation | 1.614 | 1.454 | 1.742 | 2.027 |
Slope | 3.337 | 3.574 | 3.287 | 3.585 |
Aspect | 1.081 | 1.150 | 1.147 | 1.305 |
Curvature | 1.032 | 1.160 | 1.120 | 1.038 |
TWI | 3.957 | 4.001 | 3.962 | 3.782 |
Lithology | 1.095 | 1.248 | 1.494 | 1.201 |
LC | 1.768 | 2.434 | 1.356 | 1.497 |
AAR | 1.402 | 1.289 | 2.089 | 2.085 |
AMN | 1.873 | 2.681 | 1.504 | 1.515 |
Accuracy | Precision | Recall | F1-Score | Parameters | |
---|---|---|---|---|---|
SVM | 0.7351 | 0.7154 | 0.7719 | 0.7426 | { kernal = ‘rbf’, C = 25, gamma = 20 } |
RF | 0.7980 | 0.7987 | 0.7917 | 0.7952 | { Best Estimators = 102, Best Max Depth = 15 } |
Accuracy | Precision | Recall | F1-Score | Parameters | |
---|---|---|---|---|---|
SVM | 0.7734 | 0.7623 | 0.7785 | 0.7703 | { kernal = ‘rbf’, C = 28, gamma = 18 } |
RF | 0.8046 | 0.8110 | 0.7817 | 0.7961 | { Best Estimators = 82, Best Max Depth = 20 } |
Accuracy | Precision | Recall | F1-Score | Parameters | |
---|---|---|---|---|---|
SVM | 0.7100 | 0.6774 | 0.8043 | 0.7354 | { kernal = ‘rbf’, C = 39, gamma = 29 } |
RF | 0.7740 | 0.7792 | 0.7660 | 0.7660 | { Best Estimators = 66, Best Max Depth = 8 } |
Accuracy | Precision | Recall | F1-Score | Parameters | |
---|---|---|---|---|---|
SVM | 0.7024 | 0.6747 | 0.7896 | 0.7277 | { kernal = ‘poly’, C = 13, gamma = 6 } |
RF | 0.8466 | 0.7786 | 0.7447 | 0.8015 | { Best Estimators = 16, Best Max Depth = 19 } |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, A.; Wang, Q.; Chen, Y.; Tao, K.; Peng, X.; He, W.; Gao, L.; Geli, O.; Zhang, F. Landslide Susceptibility Assessment in Hong Kong with Consideration of Spatio-Temporal Consistency. Appl. Sci. 2024, 14, 10654. https://doi.org/10.3390/app142210654
Qiu A, Wang Q, Chen Y, Tao K, Peng X, He W, Gao L, Geli O, Zhang F. Landslide Susceptibility Assessment in Hong Kong with Consideration of Spatio-Temporal Consistency. Applied Sciences. 2024; 14(22):10654. https://doi.org/10.3390/app142210654
Chicago/Turabian StyleQiu, Agen, Qinglian Wang, Yajun Chen, Kunwang Tao, Xiangyu Peng, Wangjun He, Lifeng Gao, OU’er Geli, and Fuhao Zhang. 2024. "Landslide Susceptibility Assessment in Hong Kong with Consideration of Spatio-Temporal Consistency" Applied Sciences 14, no. 22: 10654. https://doi.org/10.3390/app142210654
APA StyleQiu, A., Wang, Q., Chen, Y., Tao, K., Peng, X., He, W., Gao, L., Geli, O., & Zhang, F. (2024). Landslide Susceptibility Assessment in Hong Kong with Consideration of Spatio-Temporal Consistency. Applied Sciences, 14(22), 10654. https://doi.org/10.3390/app142210654